
DSpace 1.5.1 Manual
The DSpace Foundation

DSpace 1.5.1 Manual
The DSpace Foundation
Copyright © 2002-2008 The DSpace Foundation [http://www.dspace.org/]

Abstract

Licensed under a Creative Commons Attribution 3.0 United States License [http://creativecommons.org/licenses/by/3.0/
us/]

http://www.dspace.org/
http://www.dspace.org/
http://creativecommons.org/licenses/by/3.0/us/
http://creativecommons.org/licenses/by/3.0/us/
http://creativecommons.org/licenses/by/3.0/us/

iv

Table of Contents
Preface .. xi
1. DSpace System Documentation: Introduction ... 1
2. DSpace System Documentation: Functional Overview ... 2

2.1. Data Model ... 2
2.2. Plugin Manager .. 4
2.3. Metadata ... 4
2.4. Packager Plugins .. 5
2.5. Crosswalk Plugins .. 5
2.6. E-People and Groups .. 6

2.6.1. E-Person ... 6
2.6.2. Groups ... 6

2.7. Authentication ... 6
2.8. Authorization ... 7
2.9. Ingest Process and Workflow ... 8

2.9.1. Workflow Steps ... 9
2.10. Supervision and Collaboration ... 10
2.11. Handles ... 10
2.12. Bitstream 'Persistent' Identifiers ... 11
2.13. Storage Resource Broker (SRB) Support ... 11
2.14. Search and Browse .. 11
2.15. HTML Support ... 12
2.16. OAI Support .. 13
2.17. OpenURL Support .. 13
2.18. Creative Commons Support .. 13
2.19. Subscriptions .. 13
2.20. History .. 14
2.21. Import and Export ... 14
2.22. Registration .. 14
2.23. Statistics .. 14
2.24. Checksum Checker .. 15

3. DSpace System Documentation: Installation ... 16
3.1. Prerequisite Software ... 16

3.1.1. UNIX-like OS or Microsoft Windows .. 16
3.1.2. Java JDK 5 or later (standard SDK is fine, you don't need J2EE) 16
3.1.3. Apache Maven 2.0.8 or later (Java build tool) ... 16
3.1.4. Apache Ant 1.6.2 or later (Java build tool) .. 16
3.1.5. Relational Database: (PostgreSQL or Oracle). .. 16
3.1.6. Servlet Engine: (Jakarta Tomcat 4.x, Jetty, Caucho Resin or equivalent). 17
3.1.7. Perl (required for [dspace]/bin/dspace-info.pl) .. 18

3.2. Installation Options ... 18
3.2.1. Overview of Install Options ... 18
3.2.2. Overview of DSpace Directories ... 20
3.2.3. Installation .. 20

3.3. Advanced Installation .. 23
3.3.1. 'cron' Jobs ... 24
3.3.2. Multilingual Installation ... 24
3.3.3. DSpace over HTTPS ... 25
3.3.4. The Handle Server ... 28
3.3.5. Google and HTML sitemaps .. 29

3.4. Windows Installation ... 30
3.4.1. Pre-requisite Software ... 30

DSpace 1.5.1 Manual

v

3.4.2. Installation Steps .. 31
3.5. Checking Your Installation ... 32
3.6. Known Bugs .. 32
3.7. Common Problems .. 32

4. DSpace System Documentation: Updating a DSpace Installation .. 35
4.1. Updating From 1.4.2 to 1.5 .. 35
4.2. Updating From 1.4.1 to 1.4.2 .. 39
4.3. Updating From 1.4 to 1.4.x .. 39
4.4. Updating From 1.3.2 to 1.4.x .. 41
4.5. Updating From 1.3.1 to 1.3.2 .. 44
4.6. Updating From 1.2.x to 1.3.x .. 45
4.7. Updating From 1.2.1 to 1.2.2 .. 46
4.8. Updating From 1.2 to 1.2.1 .. 47
4.9. Updating From 1.1 (or 1.1.1) to 1.2 ... 49
4.10. Updating From 1.1 to 1.1.1 ... 52
4.11. Updating From 1.0.1 to 1.1 ... 53

5. DSpace System Documentation: Configuration and Customization ... 56
5.1. General Configuration ... 56

5.1.1. The dspace.cfg Configuration Properties File ... 56
5.1.2. Configuring Lucene Search Indexes ... 60
5.1.3. Browse Configuration ... 60
5.1.4. Configuring Media Filters .. 64
5.1.5. Wording of E-mail Messages ... 65

5.2. The Metadata and Bitstream Format Registries .. 65
5.2.1. Metadata Schema Registry ... 65
5.2.2. Metadata Format Registries .. 66
5.2.3. Bitstream Format Registry ... 66

5.3. The Default Submission License ... 67
5.3.1. Possible Points in a License ... 67

5.4. Submission Configuration .. 67
5.5. XMLUI Interface Customizations (Manakin) ... 67

5.5.1. XMLUI Configuration Properties .. 68
5.5.2. Configuring Themes and Aspects .. 71
5.5.3. Multilingual Support ... 72
5.5.4. Creating a New Theme ... 73

5.6. JSPUI Interface Customizations ... 74
5.6.1. JSPUI Configuration Properties .. 74
5.6.2. Configuring Controlled Vocabularies ... 75
5.6.3. Configuring Multilingual Support .. 76
5.6.4. Customizing the JSP pages .. 77

5.7. Advanced DSpace Customizations ... 79
5.7.1. Checksum Checker ... 79
5.7.2. Custom Authentication .. 81
5.7.3. Configuring System Statistical Reports ... 85
5.7.4. Activating Additional OAI-PMH Crosswalks ... 85
5.7.5. Configuring Packager Plugins ... 86
5.7.6. Configuring Crosswalk Plugins ... 87
5.7.7. Creating a new Media/Format Filter .. 91
5.7.8. Configuration Files for Other Applications .. 93
5.7.9. Browse Index Creation .. 94

6. DSpace System Documentation: Storage Layer ... 96
6.1. RDBMS .. 96

6.1.1. Maintenance and Backup ... 97
6.1.2. Configuring the RDBMS Component ... 97

DSpace 1.5.1 Manual

vi

6.2. Bitstream Store .. 98
6.2.1. Backup ... 100
6.2.2. Configuring the Bitstream Store .. 100

7. DSpace System Documentation: Directories and Files .. 102
7.1. Overview ... 102
7.2. Source Directory Layout .. 102
7.3. Installed Directory Layout .. 104
7.4. Contents of JSPUI Web Application ... 104
7.5. Contents of XMLUI Web Application (aka Manakin) .. 105
7.6. Log Files ... 105

8. DSpace System Documentation: Architecture ... 107
8.1. Overview ... 107

9. DSpace System Documentation: Application Layer .. 110
9.1. Web User Interface ... 110

9.1.1. Web UI Files ... 110
9.1.2. The Build Process ... 110
9.1.3. Servlets and JSPs ... 111
9.1.4. Custom JSP Tags ... 113
9.1.5. Internationalisation .. 114
9.1.6. HTML Content in Items .. 117
9.1.7. Thesis Blocking ... 118

9.2. OAI-PMH Data Provider .. 118
9.2.1. Sets .. 119
9.2.2. Unique Identifier .. 120
9.2.3. Access control ... 120
9.2.4. Modification Date (OAI Date Stamp) ... 120
9.2.5. 'About' Information ... 120
9.2.6. Deletions ... 120
9.2.7. Flow Control (Resumption Tokens) ... 121

9.3. Community and Collection Structure Importer .. 121
9.3.1. Limitation ... 123

9.4. Package Importer and Exporter .. 123
9.4.1. Ingesting ... 123
9.4.2. Disseminating .. 124
9.4.3. METS packages ... 124

9.5. Item Importer and Exporter ... 124
9.5.1. DSpace simple archive format ... 124
9.5.2. Importing Items .. 125
9.5.3. Exporting Items .. 126

9.6. Transferring Items Between DSpace Instances .. 126
9.7. Registering (Not Importing) Bitstreams ... 127

9.7.1. Accessible Storage .. 127
9.7.2. Registering Items Using the Item Importer .. 127
9.7.3. Internal Identification and Retrieval of Registered Items .. 129
9.7.4. Exporting Registered Items .. 129
9.7.5. METS Export of Registered Items ... 129
9.7.6. Deleting Registered Items .. 129

9.8. METS Tools .. 129
9.8.1. The Export Tool ... 129
9.8.2. The AIP Format ... 130
9.8.3. Limitations .. 131

9.9. MediaFilters: Transforming DSpace Content .. 131
9.10. Sub-Community Management .. 132

10. DSpace System Documentation: Business Logic Layer ... 134

DSpace 1.5.1 Manual

vii

10.1. Core Classes ... 134
10.1.1. The Configuration Manager (ConfigurationManager) ... 134
10.1.2. Constants ... 134
10.1.3. Context ... 135
10.1.4. Email .. 135
10.1.5. LogManager ... 136
10.1.6. Utils ... 136

10.2. Content Management API ... 136
10.2.1. Other Classes ... 137
10.2.2. Modifications ... 138
10.2.3. What's In Memory? ... 138
10.2.4. Dublin Core Metadata .. 139
10.2.5. Support for Other Metadata Schemas .. 140
10.2.6. Packager Plugins ... 140

10.3. Plugin Manager ... 141
10.3.1. Concepts ... 141
10.3.2. Using the Plugin Manager .. 141
10.3.3. Implementation ... 143
10.3.4. Configuring Plugins ... 145
10.3.5. Validating the Configuration ... 147
10.3.6. Use Cases .. 148

10.4. Workflow System .. 149
10.5. Administration Toolkit ... 150
10.6. E-person/Group Manager .. 151
10.7. Authorization .. 151

10.7.1. Special Groups ... 152
10.7.2. Miscellaneous Authorization Notes .. 152

10.8. Handle Manager/Handle Plugin .. 152
10.9. Search ... 153

10.9.1. Our Lucene Implementation .. 153
10.9.2. Indexed Fields .. 154
10.9.3. Harvesting API ... 154

10.10. Browse API .. 154
10.10.1. Using the API ... 156
10.10.2. Index Maintenance .. 157
10.10.3. Caveats .. 157

10.11. History Recorder ... 157
10.11.1. Archival Events .. 158
10.11.2. Serializations .. 158
10.11.3. Unique Ids ... 159
10.11.4. Storage .. 159
10.11.5. Example .. 159
10.11.6. Caveats .. 160

10.12. Checksum checker ... 160
11. Customizing and Configuring Submission User Interface .. 161

11.1. Understanding the Submission Configuration File .. 161
11.1.1. The Structure of item-submission.xml ... 161
11.1.2. Defining Steps (<step>) within the item-submission.xml .. 162

11.2. Reordering/Removing Submission Steps .. 164
11.3. Assigning a custom Submission Process to a Collection .. 165

11.3.1. Getting A Collection's Handle ... 165
11.4. Custom Metadata-entry Pages for Submission ... 166

11.4.1. Introduction ... 166
11.4.2. Describing Custom Metadata Forms ... 166

DSpace 1.5.1 Manual

viii

11.4.3. The Structure of input-forms.xml ... 166
11.4.4. Deploying Your Custom Forms ... 171

11.5. Configuring the File Upload step ... 171
11.6. Creating new Submission Steps ... 172

11.6.1. Creating a Non-Interactive Step ... 173
12. docbook/DRISchemaReference.html .. 174
13. DRI Schema Reference ... 175

13.1. Introduction .. 175
13.1.1. The Purpose of DRI .. 175
13.1.2. The Development of DRI ... 175

13.2. DRI in Manakin .. 176
13.2.1. Themes ... 176
13.2.2. Aspect Chains .. 176

13.3. Common Design Patterns .. 176
13.3.1. Localization and Internationalization .. 177
13.3.2. Standard attribute triplet ... 177
13.3.3. Structure-oriented markup .. 177

13.4. Schema Overview .. 178
13.5. Merging of DRI Documents .. 179
13.6. Version Changes ... 180

13.6.1. Changes from 1.0 to 1.1 ... 180
13.7. Element Reference ... 180

13.7.1. BODY .. 183
13.7.2. cell ... 183
13.7.3. div ... 185
13.7.4. DOCUMENT ... 188
13.7.5. field .. 189
13.7.6. figure .. 192
13.7.7. head ... 193
13.7.8. help .. 194
13.7.9. hi ... 195
13.7.10. instance ... 196
13.7.11. item .. 196
13.7.12. label .. 198
13.7.13. list .. 199
13.7.14. META ... 202
13.7.15. metadata .. 202
13.7.16. OPTIONS .. 204
13.7.17. p .. 205
13.7.18. pageMeta ... 206
13.7.19. params .. 207
13.7.20. reference .. 209
13.7.21. referenceSet .. 209
13.7.22. repository ... 211
13.7.23. repositoryMeta .. 212
13.7.24. row ... 213
13.7.25. table .. 214
13.7.26. trail ... 215
13.7.27. userMeta .. 216
13.7.28. value ... 218
13.7.29. xref ... 219

14. DSpace System Documentation: Version History ... 221
14.1. Changes in DSpace 1.5 .. 221

14.1.1. General Improvements ... 221

DSpace 1.5.1 Manual

ix

14.1.2. Bug fixes and smaller patches ... 221
14.2. Changes in DSpace 1.4.1 .. 222

14.2.1. General Improvements ... 222
14.2.2. Bug fixes ... 223

14.3. Changes in DSpace 1.4 .. 224
14.3.1. General Improvements ... 224
14.3.2. Bug fixes ... 225

14.4. Changes in DSpace 1.3.2 .. 226
14.4.1. General Improvements ... 226
14.4.2. Bug fixes ... 226

14.5. Changes in DSpace 1.3.1 .. 226
14.5.1. Bug fixes ... 226

14.6. Changes in DSpace 1.3 .. 226
14.6.1. General Improvements ... 226
14.6.2. Bug fixes ... 227

14.7. Changes in DSpace 1.2.2 .. 228
14.7.1. General Improvements ... 228
14.7.2. Bug fixes ... 228
14.7.3. Changes in JSPs ... 228

14.8. Changes in DSpace 1.2.1 .. 229
14.8.1. General Improvements ... 229
14.8.2. Bug fixes ... 229
14.8.3. Changed JSPs ... 230

14.9. Changes in DSpace 1.2 .. 230
14.9.1. General Improvments ... 230
14.9.2. Administration .. 230
14.9.3. Import/Export/OAI .. 231
14.9.4. Miscellaneous ... 231
14.9.5. JSP file changes between 1.1 and 1.2 ... 231

14.10. Changes in DSpace 1.1.1 .. 234
14.10.1. Bug fixes ... 234
14.10.2. Improvements ... 235

14.11. Changes in DSpace 1.1 ... 235
15. DSpace System Documentation: Appendices ... 237

15.1. Default Dublin Core Metadata Registry ... 237
15.2. Default Bitstream Format Registry ... 240

Index .. 243

x

List of Tables
2.1. MIT Libraries' Definitions of Bitstream Format Support Levels .. 3
2.2. Objects in the DSpace Data Model .. 4
5.1. dspace.cfg Main Properties (Not Complete) ... 57
7.1. DSpace Log File Locations ... 106
8.1. Source Code Packages ... 108
9.1. Locations of Web UI Source Files ... 110

xi

Preface

1

Chapter 1. DSpace System
Documentation: Introduction
DSpace is an open source software platform that enables organisations to:

• capture and describe digital material using a submission workflow module, or a variety of programmatic ingest
options

• distribute an organisation's digital assets over the web through a search and retrieval system

• preserve digital assets over the long term

This system documentation includes a functional overview of the system [functional.html], which is a good
introduction to the capabilities of the system, and should be readable by non-technical folk. Everyone should read this
section first because it introduces some terminology used throughout the rest of the documentation.

For people actually running a DSpace service, there is an installation guide [install.html], and sections on configuration
[configure.html] and the directory structure [directories.html]. Note that as of DSpace 1.2, the administration user
interface guide is now on-line help available from within the DSpace system.

Finally, for those interested in the details of how DSpace works, and those potentially interested in modifying the code
for their own purposes, there is a detailed architecture and design section [architecture.html].

Other good sources of information are:

• The DSpace Public API Javadocs. Build these with the command mvn javadoc:javadoc.

• The DSpace Wiki [http://wiki.dspace.org/] contains stacks of useful information about the DSpace platform and the
work people are doing with it. You are strongly encouraged to visit this site and add information about your own
work. Useful Wiki areas are:

• A list of DSpace resources [http://wiki.dspace.org/DspaceResources] (Web sites, mailing lists etc.)

• Technical FAQ [http://wiki.dspace.org/TechnicalFaq]

• A list of projects using DSpace [http://wiki.dspace.org/DspaceProjects]

• Guidelines for contributing back to DSpace [http://wiki.dspace.org/ContributionGuidelines]

• www.dspace.org [http://www.dspace.org/] has announcements and contains useful information about bringing up
an instance of DSpace at your organization.

• The dspace-tech e-mail list on SourceForge [#] is the recommended place to ask questions, since a growing
community of DSpace developers and users is on hand on that list to help with any questions you might have. The
e-mail archive of that list is a useful resource.

• The dspace-devel e-mail list [#], for those developing with the DSpace with a view to contributing to the core
DSpace code.

functional.html
functional.html
install.html
install.html
configure.html
configure.html
directories.html
directories.html
architecture.html
architecture.html
http://wiki.dspace.org/
http://wiki.dspace.org/
http://wiki.dspace.org/DspaceResources
http://wiki.dspace.org/DspaceResources
http://wiki.dspace.org/TechnicalFaq
http://wiki.dspace.org/TechnicalFaq
http://wiki.dspace.org/DspaceProjects
http://wiki.dspace.org/DspaceProjects
http://wiki.dspace.org/ContributionGuidelines
http://wiki.dspace.org/ContributionGuidelines
http://www.dspace.org/
http://www.dspace.org/
#
#
#
#

2

Chapter 2. DSpace System
Documentation: Functional Overview
The following sections describe the various functional aspects of the DSpace system.

2.1. Data Model

DSpace System Documentation:
Functional Overview

3

Data Model Diagram

The way data is organized in DSpace is intended to reflect the structure of the organization using the DSpace system.
Each DSpace site is divided into communities, which can be further divided into sub-communities reflecting the typical
university structure of college, departement, research center, or laboratory.

Communities contain collections, which are groupings of related content. A collection may appear in more than one
community.

Each collection is composed of items, which are the basic archival elements of the archive. Each item is owned by
one collection. Additionally, an item may appear in additional collections; however every item has one and only one
owning collection.

Items are further subdivided into named bundles of bitstreams. Bitstreams are, as the name suggests, streams of bits,
usually ordinary computer files. Bitstreams that are somehow closely related, for example HTML files and images
that compose a single HTML document, are organised into bundles.

In practice, most items tend to have these named bundles:

• ORIGINAL -- the bundle with the original, deposited bitstreams

• THUMBNAILS -- thumbnails of any image bitstreams

• TEXT -- extracted full-text from bitstreams in ORIGINAL, for indexing

• LICENSE -- contains the deposit license that the submitter granted the host organization; in other words, specifies
the rights that the hosting organization have

• CC_LICENSE -- contains the distribution license, if any (a Creative Commons [http://www.creativecommons.org]
license) associated with the item. This license specifies what end users downloading the content can do with the
content

Each bitstream is associated with one Bitstream Format. Because preservation services may be an important aspect
of the DSpace service, it is important to capture the specific formats of files that users submit. In DSpace, a bitstream
format is a unique and consistent way to refer to a particular file format. An integral part of a bitstream format is an
either implicit or explicit notion of how material in that format can be interpreted. For example, the interpretation for
bitstreams encoded in the JPEG standard for still image compression is defined explicitly in the Standard ISO/IEC
10918-1. The interpretation of bitstreams in Microsoft Word 2000 format is defined implicitly, through reference to
the Microsoft Word 2000 application. Bitstream formats can be more specific than MIME types or file suffixes. For
example, application/ms-word and .doc span multiple versions of the Microsoft Word application, each of
which produces bitstreams with presumably different characteristics.

Each bitstream format additionally has a support level, indicating how well the hosting institution is likely to be able
to preserve content in the format in the future. There are three possible support levels that bitstream formats may be
assigned by the hosting institution. The host institution should determine the exact meaning of each support level, after
careful consideration of costs and requirements. MIT Libraries' interpretation is shown below:

Table 2.1. MIT Libraries' Definitions of Bitstream Format Support Levels

Supported The format is recognized, and the hosting institution is
confident it can make bitstreams of this format useable
in the future, using whatever combination of techniques
(such as migration, emulation, etc.) is appropriate given
the context of need.

Known The format is recognized, and the hosting institution will
promise to preserve the bitstream as-is, and allow it to
be retrieved. The hosting institution will attempt to obtain

http://www.creativecommons.org
http://www.creativecommons.org

DSpace System Documentation:
Functional Overview

4

enough information to enable the format to be upgraded
to the 'supported' level.

Unsupported The format is unrecognized, but the hosting institution will
undertake to preserve the bitstream as-is and allow it to be
retrieved.

Each item has one qualified Dublin Core metadata record. Other metadata might be stored in an item as a serialized
bitstream, but we store Dublin Core for every item for interoperability and ease of discovery. The Dublin Core may be
entered by end-users as they submit content, or it might be derived from other metadata as part of an ingest process.

Items can be removed from DSpace in one of two ways: They may be 'withdrawn', which means they remain in the
archive but are completely hidden from view. In this case, if an end-user attempts to access the withdrawn item, they
are presented with a 'tombstone,' that indicates the item has been removed. For whatever reason, an item may also be
'expunged' if necessary, in which case all traces of it are removed from the archive.

Table 2.2. Objects in the DSpace Data Model

Object Example

Community Laboratory of Computer Science; Oceanographic
Research Center

Collection LCS Technical Reports; ORC Statistical Data Sets

Item A technical report; a data set with accompanying
description; a video recording of a lecture

Bundle A group of HTML and image bitstreams making up an
HTML document

Bitstream A single HTML file; a single image file; a source code file

Bitstream Format Microsoft Word version 6.0; JPEG encoded image format

2.2. Plugin Manager
The PluginManager is a very simple component container. It creates and organizes components (plugins), and helps
select a plugin in the cases where there are many possible choices. It also gives some limited control over the lifecycle
of a plugin.

A plugin is defined by a Java interface. The consumer of a plugin asks for its plugin by interface. A Plugin is an
instance of any class that implements the plugin interface. It is interchangeable with other implementations, so that
any of them may be "plugged in".

The mediafilter is a simple example of a plugin implementation. Refer to the Business Logic Layer
[business.html#plugin] for more details on Plugins.

2.3. Metadata
Broadly speaking, DSpace holds three sorts of metadata about archived content:

Descriptive Metadata
DSpace can support multiple flat metadata schemas for describing an item.

A qualified Dublin Core metadata schema loosely based on the Library Application Profile [http://
www.dublincore.org/documents/library-application-profile/] set of elements and qualifiers is provided by default.
The set of elements and qualifiers used by MIT Libraries [http://dspace.org/technology/metadata.html] comes

business.html#plugin
business.html#plugin
http://www.dublincore.org/documents/library-application-profile/
http://www.dublincore.org/documents/library-application-profile/
http://www.dublincore.org/documents/library-application-profile/
http://dspace.org/technology/metadata.html
http://dspace.org/technology/metadata.html

DSpace System Documentation:
Functional Overview

5

pre-configured with the DSpace source code. However, you can configure multiple schemas and select metadata
fields from a mix of configured schemas to describe your items.

Other descriptive metadata about items (e.g. metadata described in a hierarchical schema) may be held in serialized
bitstreams. Communities and collections have some simple descriptive metadata (a name, and some descriptive
prose), held in the DBMS.

Administrative Metadata
This includes preservation metadata, provenance and authorization policy data. Most of this is held within
DSpace's relation DBMS schema. Provenance metadata (prose) is stored in Dublin Core records. Additionally,
some other administrative metadata (for example, bitstream byte sizes and MIME types) is replicated in Dublin
Core records so that it is easily accessible outside of DSpace.

Structural Metadata
This includes information about how to present an item, or bitstreams within an item, to an end-user, and the
relationships between constituent parts of the item. As an example, consider a thesis consisting of a number of
TIFF images, each depicting a single page of the thesis. Structural metadata would include the fact that each image
is a single page, and the ordering of the TIFF images/pages. Structural metadata in DSpace is currently fairly
basic; within an item, bitstreams can be arranged into separate bundles as described above. A bundle may also
optionally have a primary bitstream. This is currently used by the HTML support to indicate which bitstream in
the bundle is the first HTML file to send to a browser.

In addition to some basic technical metadata, bitstreams also have a 'sequence ID' that uniquely identifies it within
an item. This is used to produce a 'persistent' bitstream identifier for each bitstream.

Additional structural metadata can be stored in serialized bitstreams, but DSpace does not currently understand
this natively.

2.4. Packager Plugins
Packagers are software modules that translate between DSpace Item objects and a self-contained external
representation, or "package". A Package Ingester interprets, or ingests, the package and creates an Item. A Package
Disseminator writes out the contents of an Item in the package format.

A package is typically an archive file such as a Zip or "tar" file, including a manifest document which contains metadata
and a description of the package contents. The IMS Content Package [http://www.imsglobal.org/content/packaging/] is
a typical packaging standard. A package might also be a single document or media file that contains its own metadata,
such as a PDF document with embedded descriptive metadata.

Package ingesters and package disseminators are each a type of named plugin (see Plugin Manager), so it is easy to
add new packagers specific to the needs of your site. You do not have to supply both an ingester and disseminator for
each format; it is perfectly acceptable to just implement one of them.

Most packager plugins call upon Crosswalk plugins to translate the metadata between DSpace's object model and the
package format.

2.5. Crosswalk Plugins
Crosswalks are software modules that translate between DSpace object metadata and a specific external representation.
An Ingestion Crosswalk interprets the external format and crosswalks it to DSpace's internal data structure, while a
Dissemination Crosswalk does the opposite.

For example, a MODS ingestion crosswalk translates descriptive metadata from the MODS format to the metadata
fields on a DSpace Item. A MODS dissemination crosswalk generates a MODS document from the metadata on a
DSpace Item.

http://www.imsglobal.org/content/packaging/
http://www.imsglobal.org/content/packaging/

DSpace System Documentation:
Functional Overview

6

Crosswalk plugins are named plugins see Plugin Manager), so it is easy to add new crosswalks. You do not have to
supply both an ingester and disseminator for each format; it is perfectly acceptable to just implement one of them.

There is also a special pair of crosswalk plugins which use XSL stylesheets to translate the external metadata to or from
an internal DSpace format. You can add and modify XSLT crosswalks simply by editing the DSpace configuration
and the stylesheets, which are stored in files in the DSpace installation directory.

The Packager plugins and OAH-PMH server make use of crosswalk plugins.

2.6. E-People and Groups
Although many of DSpace's functions such as document discovery and retrieval can be used anonymously, some
features (and perhaps some documents) are only available to certain "privileged" users. E-People and Groups are the
way DSpace identifies application users for the purpose of granting privileges. This identity is bound to a session of a
DSpace application such as the Web UI or one of the command-line batch programs. Both E-People and Groups are
granted privileges by the authorization system described below.

2.6.1. E-Person
DSpace hold the following information about each e-person:

• E-mail address

• First and last names

• Whether the user is able to log in to the system via the Web UI, and whether they must use an X509 certificate
to do so;

• A password (encrypted), if appropriate

• A list of collections for which the e-person wishes to be notified of new items

• Whether the e-person 'self-registered' with the system; that is, whether the system created the e-person record
automatically as a result of the end-user independently registering with the system, as opposed to the e-person record
being generated from the institution's personnel database, for example.

• The network ID for the corresponding LDAP record

2.6.2. Groups
Groups are another kind of entity that can be granted permissions in the authorization system. A group is usually an
explicit list of E-People; anyone identified as one of those E-People also gains the privileges granted to the group.

However, an application session can be assigned membership in a group without being identified as an E-Person. For
example, some sites use this feature to identify users of a local network so they can read restricted materials not open
to the whole world. Sessions originating from the local network are given membership in the "LocalUsers" group and
gain the corresonding privileges.

Administrators can also use groups as "roles" to manage the granting of privileges more efficiently.

2.7. Authentication
Authentication is when an application session positively identifies itself as belonging to an E-Person and/or Group. In
DSpace 1.4, it is implemented by a mechanism called Stackable Authentication: the DSpace configuration declares a
"stack" of authentication methods. An application (like the Web UI) calls on the Authentication Manager, which tries

DSpace System Documentation:
Functional Overview

7

each of these methods in turn to identify the E-Person to which the session belongs, as well as any extra Groups. The
E-Person authentication methods are tried in turn until one succeeds. Every authenticator in the stack is given a chance
to assign extra Groups. This mechanism offers the following advantages:

• Separates authentication from the Web user interface so the same authentication methods are used for other
applications such as non-interactive Web Services

• Improved modularity: The authentication methods are all independent of each other. Custom authentication methods
can be "stacked" on top of the default DSpace username/password method.

• Cleaner support for "implicit" authentication where username is found in the environment of a Web request, e.g.
in an X.509 client certificate.

2.8. Authorization
DSpace's authorization system is based on associating actions with objects and the lists of EPeople who can perform
them. The associations are called Resource Policies, and the lists of EPeople are called Groups. There are two special
groups: 'administrators', who can do anything in a site, and 'anonymous', which is a list that contains all users. Assigning
a policy for an action on an object to anonymous means giving everyone permission to do that action. (For example,
most objects in DSpace sites have a policy of 'anonymous' READ.) Permissions must be explicit - lack of an explicit
permission results in the default policy of 'deny'. Permissions also do not 'commute'; for example, if an e-person has
READ permission on an item, they might not necessarily have READ permission on the bundles and bitstreams in
that item. Currently Collections, Communities and Items are discoverable in the browse and search systems regardless
of READ authorization.

The following actions are possible:

Community

ADD/REMOVE add or remove collections or sub-communities

Collection

ADD/REMOVE add or remove items (ADD = permission to submit items)

DEFAULT_ITEM_READ inherited as READ by all submitted items

DEFAULT_BITSTREAM_READ inherited as READ by bitstreams of all submitted items

COLLECTION_ADMIN collection admins can edit items in a collection, withdraw
items, map other items into this collection.

Item

ADD/REMOVE add or remove bundles

READ can view item (item metadata is always viewable)

WRITE can modify item

Bundle

ADD/REMOVE add or remove bitstreams to a bundle

Bitstream

READ view bitstream

WRITE modify bitstream

DSpace System Documentation:
Functional Overview

8

Note that there is no 'DELETE' action. In order to 'delete' an object (e.g. an item) from the archive, one must have
REMOVE permission on all objects (in this case, collection) that contain it. The 'orphaned' item is automatically
deleted.

Policies can apply to individual e-people or groups of e-people.

2.9. Ingest Process and Workflow
Rather than being a single subsystem, ingesting is a process that spans several. Below is a simple illustration of the
current ingesting process in DSpace.

DSpace Ingest Process

The batch item importer is an application, which turns an external SIP (an XML metadata document with some content
files) into an "in progress submission" object. The Web submission UI is similarly used by an end-user to assemble
an "in progress submission" object.

Depending on the policy of the collection to which the submission in targeted, a workflow process may be started. This
typically allows one or more human reviewers or 'gatekeepers' to check over the submission and ensure it is suitable
for inclusion in the collection.

When the Batch Ingester or Web Submit UI completes the InProgressSubmission object, and invokes the next stage
of ingest (be that workflow or item installation), a provenance message is added to the Dublin Core which includes
the filenames and checksums of the content of the submission. Likewise, each time a workflow changes state (e.g.
a reviewer accepts the submission), a similar provenance statement is added. This allows us to track how the item
has changed since a user submitted it. (The History system is also invoked, but provenance is easier for us to access
at the moment.)

Once any workflow process is successfully and positively completed, the InProgressSubmission object is consumed
by an "item installer", that converts the InProgressSubmission into a fully blown archived item in DSpace. The item
installer:

• Assigns an accession date

• Adds a "date.available" value to the Dublin Core metadata record of the item

• Adds an issue date if none already present

DSpace System Documentation:
Functional Overview

9

• Adds a provenance message (including bitstream checksums)

• Assigns a Handle persistent identifier

• Adds the item to the target collection, and adds appropriate authorization policies

• Adds the new item to the search and browse indices

2.9.1. Workflow Steps
A collection's workflow can have up to three steps. Each collection may have an associated e-person group for
performing each step; if no group is associated with a certain step, that step is skipped. If a collection has no e-person
groups associated with any step, submissions to that collection are installed straight into the main archive.

In other words, the sequence is this: The collection receives a submission. If the collection has a group assigned for
workflow step 1, that step is invoked, and the group is notified. Otherwise, workflow step 1 is skipped. Likewise,
workflow steps 2 and 3 are performed if and only if the collection has a group assigned to those steps.

When a step is invoked, the task of performing that workflow step put in the 'task pool' of the associated group. One
member of that group takes the task from the pool, and it is then removed from the task pool, to avoid the situation
where several people in the group may be performing the same task without realizing it.

The member of the group who has taken the task from the pool may then perform one of three actions:

Workflow Step Possible actions

1 Can accept submission for inclusion, or reject submission.

2 Can edit metadata provided by the user with the
submission, but cannot change the submitted files. Can
accept submission for inclusion, or reject submission.

3 Can edit metadata provided by the user with the
submission, but cannot change the submitted files. Must
then commit to archive; may not reject submission.

Submission Workflow in DSpace

If a submission is rejected, the reason (entered by the workflow participant) is e-mailed to the submitter, and it is
returned to the submitter's 'My DSpace' page. The submitter can then make any necessary modifications and re-submit,
whereupon the process starts again.

If a submission is 'accepted', it is passed to the next step in the workflow. If there are no more workflow steps with
associated groups, the submission is installed in the main archive.

DSpace System Documentation:
Functional Overview

10

One last possibility is that a workflow can be 'aborted' by a DSpace site administrator. This is accomplished using
the administration UI.

The reason for this apparently arbitrary design is that is was the simplist case that covered the needs of the early adopter
communities at MIT. The functionality of the workflow system will no doubt be extended in the future.

2.10. Supervision and Collaboration
In order to facilitate, as a primary objective, the opportunity for thesis authors to be supervised in the preparation
of their e-thesis, a supervision order system exists to bind groups of other users (thesis supervisors) to an item in
someone's pre-submission workspace. The bound group can have system policies associated with it that allow different
levels of interaction with the student's item; a small set of default policy groups are provided:

• Full editorial control

• View item contents

• No policies

Once the default set has been applied, a system administrator may modify them as they would any other policy set
in DSpace

This functionality could also be used in situations where researchers wish to collaborate on a particular submission,
although there is no particular collaborative workspace functionality.

2.11. Handles
Researchers require a stable point of reference for their works. The simple evolution from sharing of citations to
emailing of URLs broke when Web users learned that sites can disappear or be reconfigured without notice, and
that their bookmark files containing critical links to research results couldn't be trusted long term. To help solve this
problem, a core DSpace feature is the creation of persistent identifier for every item, collection and community stored
in DSpace. To persist identifier, DSpace requires a storage- and location- independent mechanism for creating and
maintaining identifiers. DSpace uses the CNRI Handle System [http://www.handle.net/] for creating these identifiers.
The rest of this section assumes a basic familiarity with the Handle system.

DSpace uses Handles primarily as a means of assigning globally unique identifiers to objects. Each site running DSpace
needs to obtain a Handle 'prefix' from CNRI, so we know that if we create identifiers with that prefix, they won't clash
with identifiers created elsewhere.

Presently, Handles are assigned to communities, collections, and items. Bundles and bitstreams are not assigned
Handles, since over time, the way in which an item is encoded as bits may change, in order to allow access with future
technologies and devices. Older versions may be moved to off-line storage as a new standard becomes de facto. Since
it's usually the item that is being preserved, rather than the particular bit encoding, it only makes sense to persistently
identify and allow access to the item, and allow users to access the appropriate bit encoding from there.

Of course, it may be that a particular bit encoding of a file is explicitly being preserved; in this case, the bitstream
could be the only one in the item, and the item's Handle would then essentially refer just to that bitstream. The same
bitstream can also be included in other items, and thus would be citable as part of a greater item, or individually.

The Handle system also features a global resolution infrastructure; that is, an end-user can enter a Handle into any
service (e.g. Web page) that can resolve Handles, and the end-user will be directed to the object (in the case of DSpace,
community, collection or item) identified by that Handle. In order to take advantage of this feature of the Handle
system, a DSpace site must also run a 'Handle server' that can accept and resolve incoming resolution requests. All the
code for this is included in the DSpace source code bundle.

http://www.handle.net/
http://www.handle.net/

DSpace System Documentation:
Functional Overview

11

Handles can be written in two forms:

hdl:1721.123/4567
http://hdl.handle.net/1721.123/4567

The above represent the same Handle. The first is possibly more convenient to use only as an identifier; however,
by using the second form, any Web browser becomes capable of resolving Handles. An end-user need only access
this form of the Handle as they would any other URL. It is possible to enable some browsers to resolve the first form
of Handle as if they were standard URLs using CNRI's Handle Resolver plug-in [http://www.handle.net/resolver/
index.html], but since the first form can always be simply derived from the second, DSpace displays Handles in the
second form, so that it is more useful for end-users.

It is important to note that DSpace uses the CNRI Handle infrastructure only at the 'site' level. For example, in the
above example, the DSpace site has been assigned the prefix '1721.123'. It is still the responsibility of the DSpace
site to maintain the association between a full Handle (including the '4567' local part) and the community, collection
or item in question.

2.12. Bitstream 'Persistent' Identifiers
Similar to handles for DSpace items, bitstreams also have 'Persistent' identifiers. They are more volatile than Handles,
since if the content is moved to a different server or organizaion, they will no longer work (hence the quotes around
'persistent'). However, they are more easily persisted than the simple URLs based on database primary key previously
used. This means that external systems can more reliably refer to specific bitstreams stored in a DSpace instance.

Each bitstream has a sequence ID, unique within an item. This sequence ID is used to create a persistent ID, of the form:

dspace url/bitstream/handle/sequence ID/filename

For example:

https://dspace.myu.edu/bitstream/123.456/789/24/foo.html

The above refers to the bitstream with sequence ID 24 in the item with the Handle hdl:123.456/789. The
foo.html is really just there as a hint to browsers: Although DSpace will provide the appropriate MIME type, some
browsers only function correctly if the file has an expected extension.

2.13. Storage Resource Broker (SRB) Support
DSpace offers two means for storing bitstreams. The first is in the file system on the server. The second is using SRB
(Storage Resource Broker) [http://www.sdsc.edu/srb]. Both are achieved using a simple, lightweight API.

SRB is purely an option but may be used in lieu of the server's file system or in addition to the file system. Without going
into a full description, SRB is a very robust, sophisticated storage manager that offers essentially unlimited storage and
straightforward means to replicate (in simple terms, backup) the content on other local or remote storage resources.

2.14. Search and Browse
DSpace allows end-users to discover content in a number of ways, including:

• Via external reference, such as a Handle

• Searching for one or more keywords in metadata or extracted full-text

http://www.handle.net/resolver/index.html
http://www.handle.net/resolver/index.html
http://www.handle.net/resolver/index.html
http://www.sdsc.edu/srb
http://www.sdsc.edu/srb
http://www.sdsc.edu/srb

DSpace System Documentation:
Functional Overview

12

• Browsing though title, author, date or subject indices, with optional image thumbnails

Search is an essential component of discovery in DSpace. Users' expectations from a search engine are quite high,
so a goal for DSpace is to supply as many search features as possible. DSpace's indexing and search module has
a very simple API which allows for indexing new content, regenerating the index, and performing searches on
the entire corpus, a community, or collection. Behind the API is the Java freeware search engine Lucene [http://
jakarta.apache.org/lucene/]. Lucene gives us fielded searching, stop word removal, stemming, and the ability to
incrementally add new indexed content without regenerating the entire index. The specific Lucene search indexes are
configurable enabling institutions to customize which DSpace metadata fields are indexed.

Another important mechanism for discovery in DSpace is the browse. This is the process whereby the user views a
particular index, such as the title index, and navigates around it in search of interesting items. The browse subsystem
provides a simple API for achieving this by allowing a caller to specify an index, and a subsection of that index.
The browse subsystem then discloses the portion of the index of interest. Indices that may be browsed are item title,
item issue date, item author, and subject terms. Additionally, the browse can be limited to items within a particular
collection or community.

2.15. HTML Support
For the most part, at present DSpace simply supports uploading and downloading of bitstreams as-is. This is fine for
the majority of commonly-used file formats -- for example PDFs, Microsoft Word documents, spreadsheets and so
forth. HTML documents (Web sites and Web pages) are far more complicated, and this has important ramifications
when it comes to digital preservation:

• Web pages tend to consist of several files -- one or more HTML files that contain references to each other, and
stylesheets and image files that are referenced by the HTML files.

• Web pages also link to or include content from other sites, often imperceptably to the end-user. Thus, in a few year's
time, when someone views the preserved Web site, they will probably find that many links are now broken or refer
to other sites than are now out of context.

In fact, it may be unclear to an end-user when they are viewing content stored in DSpace and when they are seeing
content included from another site, or have navigated to a page that is not stored in DSpace. This problem can
manifest when a submitter uploads some HTML content. For example, the HTML document may include an image
from an external Web site, or even their local hard drive. When the submitter views the HTML in DSpace, their
browser is able to use the reference in the HTML to retrieve the appropriate image, and so to the submitter, the
whole HTML document appears to have been deposited correctly. However, later on, when another user tries to
view that HTML, their browser might not be able to retrieve the included image since it may have been removed
from the external server. Hence the HTML will seem broken.

• Often Web pages are produced dynamically by software running on the Web server, and represent the state of a
changing database underneath it.

Dealing with these issues is the topic of much active research. Currently, DSpace bites off a small, tractable chunk
of this problem. DSpace can store and provide on-line browsing capability for self-contained, non-dynamic HTML
documents. In practical terms, this means:

• No dynamic content (CGI scripts and so forth)

• All links to preserved content must be relative links, that do not refer to 'parents' above the 'root' of the HTML
document/site:

• diagram.gif is OK

• image/foo.gif is OK

http://jakarta.apache.org/lucene/
http://jakarta.apache.org/lucene/
http://jakarta.apache.org/lucene/

DSpace System Documentation:
Functional Overview

13

• ../index.html is only OK in a file that is at least a directory deep in the HTML document/site hierarchy

• /stylesheet.css is not OK (the link will break)

• http://somedomain.com/content.html is not OK (the link will continue to link to the external site
which may change or disappear)

• Any 'absolute links' (e.g. http://somedomain.com/content.html) are stored 'as is', and will continue to
link to the external content (as opposed to relative links, which will link to the copy of the content stored in DSpace.)
Thus, over time, the content refered to by the absolute link may change or disappear.

2.16. OAI Support
The Open Archives Initiative [http://www.openarchives.org/] has developed a protocol for metadata harvesting [http://
www.openarchives.org/OAI/openarchivesprotocol.html]. This allows sites to programmatically retrieve or 'harvest'
the metadata from several sources, and offer services using that metadata, such as indexing or linking services. Such
a service could allow users to access information from a large number of sites from one place.

DSpace exposes the Dublin Core metadata for items that are publicly (anonymously) accessible. Additionally, the
collection structure is also exposed via the OAI protocol's 'sets' mechanism. OCLC's open source OAICat [http://
www.oclc.org/research/software/oai/cat.shtm] framework is used to provide this functionality.

You can also configure the OAI service to make use of any crosswalk plugin to offer additional metadata formats,
such as MODS.

DSpace's OAI service does support the exposing of deletion information for withdrawn items, but not for items that
are 'expunged' (see above). DSpace also supports OAI-PMH resumption tokens.

2.17. OpenURL Support
DSpace supports the OpenURL protocol [http://www.sfxit.com/OpenURL/] from SFX [http://www.sfxit.com/], in a
rather simple fashion. If your institution has an SFX server, DSpace will display an OpenURL link on every item page,
automatically using the Dublin Core metadata. Additionally, DSpace can respond to incoming OpenURLs. Presently
it simply passes the information in the OpenURL to the search subsystem. A list of results is then displayed, which
usually gives the relevant item (if it is in DSpace) at the top of the list.

2.18. Creative Commons Support
Dspace provides support for Creative Commons licenses to be attached to items in the repository. They represent
an alternative to traditional copyright. To learn more about Creative Commons, visit their website [http://
creativecommons.org]. Support for the licenses is controlled by a site-wide configuration option, and since license
selection involves redirection to the Creative Commons website, additional parameters may be configured to work with
a proxy server. If the option is enabled, users may select a Creative Commons license during the submission process,
or elect to skip Creative Commons licensing. If a selection is made a copy of the license text and RDF metadata is
stored along with the item in the repository. There is also an indication - text and a Creative Commons icon - in the
item display page of the web user interface when an item is licensed under Creative Commons.

2.19. Subscriptions
As noted above, end-users (e-people) may 'subscribe' to collections in order to be alerted when new items appear in
those collections. Each day, end-users who are subscribed to one or more collections will receive an e-mail giving

http://www.openarchives.org/
http://www.openarchives.org/
http://www.openarchives.org/OAI/openarchivesprotocol.html
http://www.openarchives.org/OAI/openarchivesprotocol.html
http://www.openarchives.org/OAI/openarchivesprotocol.html
http://www.oclc.org/research/software/oai/cat.shtm
http://www.oclc.org/research/software/oai/cat.shtm
http://www.oclc.org/research/software/oai/cat.shtm
http://www.sfxit.com/OpenURL/
http://www.sfxit.com/OpenURL/
http://www.sfxit.com/
http://www.sfxit.com/
http://creativecommons.org
http://creativecommons.org
http://creativecommons.org

DSpace System Documentation:
Functional Overview

14

brief details of all new items that appeared in any of those collections the previous day. If no new items appeared in
any of the subscribed collections, no e-mail is sent. Users can unsubscribe themselves at any time. RSS feeds of new
items are also available for collections and communities.

2.20. History
While provenance information in the form of prose is very useful, it is not easily programmatically manipulated.
The History system captures a time-based record of significant changes in DSpace, in a manner suitable for later
'refactoring' or repurposing.

Currently, the History subsystem is explicitly invoked when significant events occur (e.g., DSpace accepts an item into
the archive). The History subsystem then creates RDF data describing the current state of the object. The RDF data is
modeled using Harmony/ABC [http://www.metadata.net/harmony/], an ontology for describing temporal-based data,
and stored in the file system. Some simple indices for unwinding the data are available.

2.21. Import and Export
DSpace also includes batch tools to import and export items in a simple directory structure, where the Dublin Core
metadata is stored in an XML file. This may be used as the basis for moving content between DSpace and other systems.

There is also a METS-based export tool, which exports items as METS-based metadata with associated bitstreams
referenced from the METS file.

2.22. Registration
Registration is an alternate means of incorporating items, their metadata, and their bitstreams into DSpace by taking
advantage of the bitstreams already being in accessible computer storage. An example might be that there is a repository
for existing digital assets. Rather than using the normal interactive ingest process or the batch import to furnish DSpace
the metadata and to upload bitstreams, registration provides DSpace the metadata and the location of the bitstreams.
DSpace uses a variation of the import tool to accomplish registration.

2.23. Statistics
Various statistical reports about the contents and use of your system can be automatically generated by the system.
These are generated by analysing DSpace's log files. Statistics can be broken down monthly.

The report includes data such as:

• A customisable general summary of activities in the archive, by default including:

• Number of item views

• Number of collection visits

• Number of community visits

• Number of OAI Requests

• Customisable summary of archive contents

• Broken-down list of item viewings

• A full break-down of all system activity

http://www.metadata.net/harmony/
http://www.metadata.net/harmony/

DSpace System Documentation:
Functional Overview

15

• User logins

• Most popular searches

The results of statistical analysis can be presented on a by-month and an in-total report, and are available via the user
interface. The reports can also either be made public or restricted to administrator access only.

2.24. Checksum Checker
The purpose of the checker is to verify that the content in a DSpace repository has not become corrupted or been
tampered with. The functionality can be invoked on an ad-hoc basis from the command line, or configured via cron
or similar. Options exist to support large repositories that cannot be entirely checked in one run of the tool. The tool
is extensible to new reporting and checking priority approaches.

16

Chapter 3. DSpace System
Documentation: Installation
3.1. Prerequisite Software
The list below describes the third-party components and tools you'll need to run a DSpace server. These are just
guidelines. Since DSpace is built on open source, standards-based tools, there are numerous other possibilities and
setups.

Also, please note that the configuration and installation guidelines relating to a particular tool below are here for
convenience. You should refer to the documentation for each individual component for complete and up-to-date details.
Many of the tools are updated on a frequent basis, and the guidelines below may become out of date.

3.1.1. UNIX-like OS or Microsoft Windows
• UNIX-like OS (Linux, HP/UX etc) : Many distributions of Linux/Unix come with some of the dependencies below

pre installed or easily installed via updates, you should consult your particular distributions documentation to
determine what is already available.

• Microsoft Windows: (see full Windows Instructions for full set of prerequisites)

3.1.2. Java JDK 5 or later (standard SDK is fine, you
don't need J2EE)
DSpace now required Java 5 or greater because of usage of new language capabilities introduced in 5 that make coding
easier and cleaner.

Java 5 or later can be downloaded from the following location: http://java.sun.com/javase/downloads/index.jsp

3.1.3. Apache Maven 2.0.8 or later (Java build tool)
Maven is necessary in the first stage of the build process to assemble the installation package for your DSpace instance.
It gives you the flexibility to customize DSpace using the exisitng Maven projects found in the [dspace-source]/
dspace/modules directory or by adding in your own Maven project to build the installation package for DSpace,
and apply any custom interface "overlay" changes.

Maven can be downloaded from the the following location: http://maven.apache.org/download.html

3.1.4. Apache Ant 1.6.2 or later (Java build tool)
Apache Ant is still required for the second stage of the build process. It is used once the installation package has
been constructed in [dspace-source]/dspace/target/dspace-<version>-build.dir and still uses
some of the familiar ant build targets found in the 1.4.x build process.

Ant can be downloaded from the following location: http://ant.apache.org [http://ant.apache.org/]

3.1.5. Relational Database: (PostgreSQL or Oracle).
• PostgreSQL 7.3 or greater

http://java.sun.com/javase/downloads/index.jsp
http://maven.apache.org/download.html
http://ant.apache.org/
http://ant.apache.org/

DSpace System
Documentation: Installation

17

PostgreSQL can be downloaded from the following location: http://www.postgresql.org/ [http://
www.postgresql.org/] Its highly recommended that you try to work with Postgres 8.x or greater, however, 7.3 or
greater should still work. Unicode (specifically UTF-8) support must be enabled. This is enabled by default in 8.0+.
For 7.x, be sure to compile with the following options to the 'configure' script:

•
--enable-multibyte --enable-unicode --with-java

Once installed, you need to enable TCP/IP connections (DSpace uses JDBC). For 7.x, edit postgresql.conf
(usually in /usr/local/pgsql/data or /var/lib/pgsql/data), and add this line:

tcpip_socket = true

For 8.0+, in postgresql.conf uncomment the line starting:

listen_addresses = 'localhost'

Then tighten up security a bit by editing pg_hba.conf and adding this line:

host dspace dspace 127.0.0.1 255.255.255.255 md5

Then restart PostgreSQL.

• Oracle 9 or greater

Details on acquiring Oracle can be downloaded from the following location: http://www.oracle.com/database/

You will need to create a database for DSpace. Make sure that the character set is one of the Unicode character
sets. DSpace uses UTF-8 natively, and it is suggested that the Oracle database use the same character set. You will
also need to create a user account for DSpace (e.g. dspace,) and ensure that it has permissions to add and remove
tables in the database. Refer to the Quick Installation for more details.

NOTE: DSpace uses sequences to generate unique object IDs - beware Oracle sequences, which are said to lose
their values when doing a database export/import, say restoring from a backup. Be sure to run the script etc/
update-sequences.sql.

ALSO NOTE: Everything is fully functional, although Oracle limits you to 4k of text in text fields such as item
metadata or collection descriptions.

For people interested in switching from Postgres to Oracle, I know of no tools that would do this automatically.
You will need to recreate the community, collection, and eperson structure in the Oracle system, and then use the
item export and import tools to move your content over.

3.1.6. Servlet Engine: (Jakarta Tomcat 4.x, Jetty, Caucho
Resin or equivalent).

• Jakarta Tomcat 4.x or later.

Tomcat can be dowloaded from the following location: http://tomcat.apache.org [http://tomcat.apache.org/
whichversion.html]

http://www.postgresql.org/
http://www.postgresql.org/
http://www.postgresql.org/
http://www.oracle.com/database/
http://tomcat.apache.org/whichversion.html
http://tomcat.apache.org/whichversion.html
http://tomcat.apache.org/whichversion.html

DSpace System
Documentation: Installation

18

Note that DSpace will need to run as the same user as Tomcat, so you might want to install and run Tomcat as a
user called 'dspace'. Set the environment variable TOMCAT_USER appropriately.

Modifications in [tomcat]/tomcat.conf

You need to ensure that Tomcat has a) enough memory to run DSpace and b) uses UTF-8 as its default file encoding
for international character support. So ensure in your startup scripts (etc) that the following environment variable
is set:

JAVA_OPTS="-Xmx512M -Xms64M -Dfile.encoding=UTF-8"

Modifications in [tomcat]/config/server.xml

You also need to alter Tomcat's default configuration to support searching and browsing of multi-byte UTF-8
correctly. You need to add a configuration option to the <Connector> element in [tomcat]/config/
server.xml:

URIEncoding="UTF-8"

e.g. if you're using the default Tomcat config, it should read:

<!-- Define a non-SSL HTTP/1.1 Connector on port 8080 -->
<Connector port="8080"
 maxThreads="150" minSpareThreads="25"
 maxSpareThreads="75"
 enableLookups="false" redirectPort="8443"
 acceptCount="100"
 connectionTimeout="20000"
 disableUploadTimeout="true"
 URIEncoding="UTF-8"
 />

You may change the port from 8080 by editing it in the file above, and by setting the variable CONNECTOR_PORT
in tomcat.conf

• Jetty or Caucho Resin

DSpace will also run on an equivalent servlet Engine, such as Jetty (http://www.mortbay.org/jetty/index.html) or
Caucho Resin (http://www.caucho.com/) [http://www.caucho.com/].

Jetty and Resin are configured for correct handling of UTF-8 by default.

3.1.7. Perl (required for [dspace]/bin/dspace-info.pl)

3.2. Installation Options

3.2.1. Overview of Install Options
With the advent of a new Apache Maven 2 [http://maven.apache.org/] based build architecture in DSpace 1.5.x, you
now have two options in how you may wish to install and manage your local installation of DSpace. If you've used

http://www.mortbay.org/jetty/index.html
http://www.caucho.com/
http://www.caucho.com/
http://maven.apache.org/
http://maven.apache.org/

DSpace System
Documentation: Installation

19

DSpace 1.4.x, please recognize that the initial build proceedure has changed to allow for more customization. You
will find the later 'Ant based' stages of the installation proceedure familiar. Maven is used to resolve the dependencies
of DSpace online from the 'Maven Central Repository' server.

Its important to note that the strategies are identical in terms of the list of proceedures required to complete the build
process, the only difference being that the Source Release includes "more modules" that will be built given their
presence in the distribution package.

• Default Release (dspace-<version>-release.zip)

• This distribution will be adequate for most cases of running a DSpace instance. It is intended to be the
quickest way to get DSpace installed and running while still allowing for customization of the themes and
branding of your DSpace instance.

• This method allows you to customize DSpace configurations (in dspace.cfg) or user interfaces, using basic pre-
built interface "overlays".

• It downloads "precompiled" libraries for the core dspace-api, supporting servlets, taglibraries, aspects and themes
for the dspace-xmlui, dspace-xmlui and other webservice/applications.

• This approach exposes the parts of the application that the DSpace commiters would prefer to see customized.
All other modules are downloaded from the 'Maven Central Repository'

The directory structure for this release is the following:

• [dspace-source]

• dspace/ - DSpace 'build' and configuration module

• pom.xml - DSpace Parent Project definition

• Source Release (dspace-<version>-src-release.zip)

• This method is recommended for those who wish to develop DSpace further or alter its underlying
capabilities to a greater degree.

• It contains "all" dspace code for the core dspace-api, supporting servlets, taglibraries, aspects and themes for the
dspace-xmlui, dspace-xmlui and other webservice/applications.

• Provides all the same capabilities as the normal release.

The directory structure for this release is more detailed:

• • [dspace-source]

• dspace/ - DSpace 'build' and configuration module

• dspace-api/ - Java API source module

• dspace-jspui/ - JSP-UI source module

• dspace-oai/ - OAI-PMH source module

• dspace-xmlui/ - XML-UI source module

• dspace-lni/ - Lightweight Network Interface source module

DSpace System
Documentation: Installation

20

• dspace-sword/ - SWORD (Simple Web-service Offering Repository Deposit) deposit service source
module

• pom.xml - DSpace Parent Project definition

Both approaches provide you with the same control over how DSpace builds itself (especially in terms of adding
completely custom/3rd-party DSpace "modules" you wish to use). Both methods allow you the ability to create more
complex user interface "overlays" in Maven. An interface "overlay" allows you to only manage your local custom
code (in your local CVS or SVN), and automatically download the rest of the interface code from the maven central
repository whenever you build DSpace. This reduces the amount of out-of-the-box DSpace interface code maintained
in your local CVS / SVN.

3.2.2. Overview of DSpace Directories
Before beginning an installation, it is important to get a general understanding of the DSpace directories and the names
by which they are generally referred. (Please attempt to use these below directory names when asking for help on the
DSpace Mailing Lists, as it will help everyone better understand what directory you may be referring to.)

DSpace uses three separate directory trees. Although you don't need to know all the details of them in order to install
DSpace, you do need to know they exist and also know how they're referred to in this document:

1. the installation directory , referred to as [dspace] . This is the location where DSpace is installed and running
off of it is the location that gets defined in the dspace.cfg as "dspace.dir". It is where all the DSpace configuration
files, command line scripts, documentation and webapps will be installed to.

2. the source directory , referred to as [dspace-source] . This is the location where the DSpace release
distribution has been unzipped into. It usually has the name of the archive that you expanded such as dspace-
<version>-release or dspace-<version>-src-release. It is the directory where all of your "build" commands will
be run.

3. the web deployment directory . This is the directory that contains your DSpace web application(s). In DSpace
1.5.x and above, this corresponds to [dspace]/webapps by default. However, if you are using Tomcat, you
may decide to copy your DSpace web applications from [dspace]/webapps/ to [tomcat]/webapps/
(with [tomcat] being wherever you installed Tomcat--also known as $CATALINA_HOME).

For details on the contents of these separate directory trees, refer to directories.html. Note that the [dspace-
source] and [dspace] directories are always separate!

3.2.3. Installation
This method gets you up and running with DSpace quickly and easily. It is identical in both the Default Release and
Source Release distributions.

1. Create the DSpace user. This needs to be the same user that Tomcat (or Jetty etc) will run as. e.g. as root run:

useradd -m dspace

2. Download the latest DSpace release [http://sourceforge.net/projects/dspace/] and unpack it. Although there are two
available releases (dspace-1.x-release.zip and dspace-1.x-src-release.zip), you only need to
choose one. If you want a copy of all underlying Java source code, you should download the dspace-1.x-src-
release.zip release.

unzip dspace-1.x-release.zip

directories.html
http://sourceforge.net/projects/dspace/
http://sourceforge.net/projects/dspace/

DSpace System
Documentation: Installation

21

For ease of reference, we will refer to the location of this unzipped version of the DSpace release as [dspace-
source] in the remainder of these instructions.

3. Database Setup

Postgres:

a. A PostgreSQL 8.1-404 jdbc3 driver is configure as part of the default DSpace build. You no longer need to
copy any postgres jars to get postgres installed.

b. Create a dspace database, owned by the dspace PostgreSQL user:

createuser -U postgres -d -A -P dspace
createdb -U dspace -E UNICODE dspace

Enter a password for the DSpace database. (This isn't the same as the dspace user's UNIX password.)

Oracle:

a. Setting up oracle is a bit different now. You will need still need to get a Copy of the oracle JDBC driver, but
instead of copying it into a lib directory you will need to install it into your local Maven repository. You'll need
to download it first from this location: http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/htdocs/
jdbc_10201.html

$ mvn install:install-file -Dfile=ojdbc14.jar -DgroupId=com.oracle \ -
DartifactId=ojdbc14 -Dversion=10.2.0.2.0 -Dpackaging=jar -DgeneratePom=true

b. Create a database for DSpace. Make sure that the character set is one of the Unicode character sets. DSpace uses
UTF-8 natively, and it is suggested that the Oracle database use the same character set. Create a user account
for DSpace (e.g. dspace,) and ensure that it has permissions to add and remove tables in the database.

c. Edit the [dspace-source]/dspace/config/dspace.cfg database settings:

db.name = oracle
db.url = jdbc.oracle.thin:@//host:port/dspace
db.driver = oracle.jdbc.OracleDriver

d. Go to [dspace-source]/dspace/etc/oracle and copy the contents to their parent directory,
overwriting the versions in the parent:

cd [dspace-source]/dspace/etc/oracle
cp * ..

You now have Oracle-specific .sql files in your etc directory, and your dspace.cfg is modified to point to
your Oracle database.

4. Edit [dspace-source]/dspace/config/dspace.cfg, in particular you'll need to set these properties:

dspace.dir -- must be set to the [dspace] (installation) directory.

dspace.url -- complete URL of this server's DSpace home page.

dspace.hostname -- fully-qualified domain name of web server.

http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/htdocs/jdbc_10201.html
http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/htdocs/jdbc_10201.html

DSpace System
Documentation: Installation

22

dspace.name -- "Proper" name of your server, e.g. "My Digital Library".

db.password -- the database password you entered in the previous step.

mail.server -- fully-qualified domain name of your outgoing mail server.

mail.from.address -- the "From:" address to put on email sent by DSpace.

feedback.recipient -- mailbox for feedback mail.

mail.admin -- mailbox for DSpace site administrator.

alert.recipient -- mailbox for server errors/alerts (not essential but very useful!)

registration.notify -- mailbox for emails when new users register (optional)

NOTE: You can interpolate the value of one configuration variable in the value of another one. For example, to
set feedback.recipient to the same value as mail.admin, the line would look like:

 feedback.recipient = ${mail.admin}

See the dspace.cfg file for examples.

5. Create the directory for the DSpace installation (i.e. [dspace]). As root (or a user with appropriate permissions),
run:

mkdir [dspace]
chown dspace [dspace]

(Assuming the dspace UNIX username.)

6. As the dspace UNIX user, generate the DSpace installation package in the [dspace-source]/dspace/
target/dspace-[version].dir/ directory:

cd [dspace-source]/dspace/

mvn package

Note: without any extra arguments, the DSpace installation package is initialized for PostgreSQL.

If you want to use Oracle instead, you should build the DSpace installation package as follows:

mvn -Ddb.name=oracle package

7. As the dspace UNIX user, initialize the DSpace database and install DSpace to [dspace]:

cd
 [dspace-source]/dspace/target/dspace-[version].dir/
ant fresh_install

Note: to see a complete list of build targets, run

DSpace System
Documentation: Installation

23

ant help

The most likely thing to go wrong here is the database connection. See the common problems section.

8. Tell your Tomcat/Jetty/Resin installation where to find your DSpace web application(s). As an example, in the
<Host> section of your [tomcat]/conf/server.xml you could add lines similar to the following (but
replace [dspace] with your installation location):

<!-- DEFINE A CONTEXT PATH FOR DSpace JSP User Interface -->
<Context path="/jspui" docBase="[dspace]\webapps\jspui" debug="0"
 reloadable="true" cachingAllowed="false"
 allowLinking="true"/>

<!-- DEFINE A CONTEXT PATH FOR DSpace OAI User Interface -->
<Context path="/oai" docBase="[dspace]\webapps\oai" debug="0"
 reloadable="true" cachingAllowed="false"
 allowLinking="true"/>

Alternatively, you could copy only the DSpace Web application(s) you wish to use from [dspace]/webapps
to the appropriate directory in your Tomcat/Jetty/Resin installation. For example:

cp -r [dspace]/webapps/jspui
 [tomcat]/webapps
cp -r [dspace]/webapps/oai
 [tomcat]/webapps

9. Create an initial administrator account:

 [dspace]/bin/create-administrator

10.Now the moment of truth! Start up (or restart) Tomcat/Jetty/Resin. Visit the base URL(s) of your server, depending
on which DSpace web applications you want to use. You should see the DSpace home page. Congratulations!

Base URLs of DSpace Web Applications:

• JSP User Interface - (e.g.) http://dspace.myu.edu:8080/jspui

• XML User Interface (aka. Manakin) - (e.g.) http://dspace.myu.edu:8080/xmlui

• OAI-PMH Interface - (e.g.) http://dspace.myu.edu:8080/oai/request?verb=identify (Should return an XML-based
response)

In order to set up some communities and collections, you'll need to login as your DSpace Administrator (which you
created with create-administrator above) and access the administration UI in either the JSP or XML user
interface.

3.3. Advanced Installation
The above installation steps are sufficient to set up a test server to play around with, but there are a few other steps
and options you should probably consider before deploying a DSpace production site.

DSpace System
Documentation: Installation

24

3.3.1. 'cron' Jobs
A couple of DSpace features require that a script is run regularly -- the e-mail subscription feature that alerts users of
new items being deposited, and the new 'media filter' tool, that generates thumbnails of images and extracts the full-
text of documents for indexing.

To set these up, you just need to run the following command as the dspace UNIX user:

crontab -e

Then add the following lines:

Send out subscription e-mails at 01:00 every day
0 1 * * * [dspace]/bin/sub-daily
Run the media filter at 02:00 every day
0 2 * * * [dspace]/bin/filter-media
Run the checksum checker at 03:00
0 3 * * * [dspace]/bin/checker -lp
Mail the results to the sysadmin at 04:00
0 4 * * * [dspace]/bin/dsrun org.dspace.checker.DailyReportEmailer
 -c

Naturally you should change the frequencies to suit your environment.

PostgreSQL also benefits from regular 'vacuuming', which optimizes the indices and clears out any deleted data.
Become the postgres UNIX user, run crontab -e and add (for example):

Clean up the database nightly at 4.20am
20 4 * * * vacuumdb --analyze dspace > /dev/null 2>&1

In order that statistical reports are generated regularly and thus kept up to date you should set up the following cron jobs:

Run stat analyses
0 1 * * * [dspace]/bin/stat-general
0 1 * * * [dspace]/bin/stat-monthly
0 2 * * * [dspace]/bin/stat-report-general
0 2 * * * [dspace]/bin/stat-report-monthly

Obviously, you should choose execution times which are most useful to you, and you should ensure that the -report-
scripts run a short while after the analysis scripts to give them time to complete (a run of around 8 months worth of
logs can take around 25 seconds to complete); the resulting reports will let you know how long analysis took and you
can adjust your cron times accordingly.

For information on customising the output of this see configuring system statistical reports [configure.html#statistics].

3.3.2. Multilingual Installation
In order to deploy a multilingual version of DSpace you have to configure two parameters in [dspace-source]/
config/dspace.cfg:

default.locale, e. g. default.locale = en

webui.supported locales, e. g. webui.supported.locales = en, de

configure.html#statistics
configure.html#statistics

DSpace System
Documentation: Installation

25

The Locales might have the form country, country_language, country_language_variant.

Accoding to the languages you wish to support, you have to make sure, that all the i18n related files are available
see the Multilingual User Interface Configuring MultiLingual Support [configure.html#multilingualui] section for the
JSPUI or the Multilingual Support for XMLUI in the configuration documentation.

3.3.3. DSpace over HTTPS
If your DSpace is configured to have users login with a username and password (as opposed to, say, client
Web certificates), then you should consider using HTTPS. Whenever a user logs in with the Web form (e.g.
dspace.myuni.edu/dspace/password-login) their DSpace password is exposed in plain text on the
network. This is a very serious security risk since network traffic monitoring is very common, especially at universities.
If the risk seems minor, then consider that your DSpace administrators also login this way and they have ultimate
control over the archive.

The solution is to use HTTPS (HTTP over SSL, i.e. Secure Socket Layer, an encrypted transport), which protects your
passwords against being captured. You can configure DSpace to require SSL on all "authenticated" transactions so it
only accepts passwords on SSL connections.

The following sections show how to set up the most commonly-used Java Servlet containers to support HTTP over
SSL.

To enable the HTTPS support in Tomcat 5.0:

1. For Production use: Follow this procedure to set up SSL on your server. Using a "real" server certificate ensures
your users' browsers will accept it without complaints.

In the examples below, $CATALINA_BASE is the directory under which your Tomcat is installed.

a. Create a Java keystore for your server with the password changeit, and install your server certificate under
the alias "tomcat". This assumes the certificate was put in the file server.pem:

 $JAVA_HOME/bin/keytool -import -noprompt -v -storepass changeit
 -keystore $CATALINA_BASE/conf/keystore -alias tomcat -file
 myserver.pem

b. Install the CA (Certifying Authority) certificate for the CA that granted your server cert, if necessary. This
assumes the server CA certificate is in ca.pem:

 $JAVA_HOME/bin/keytool -import -noprompt -storepass changeit
 -trustcacerts -keystore $CATALINA_BASE/conf/keystore -alias ServerCA
 -file ca.pem

c. Optional -- ONLY if you need to accept client certificates for the X.509 certificate stackable authentication
module See the configuration section [configure.html#authenticate] for instructions on enabling the X.509
authentication method. Load the keystore with the CA (certifying authority) certificates for the authorities
of any clients whose certificates you wish to accept. For example, assuming the client CA certificate is in
client1.pem:

 $JAVA_HOME/bin/keytool -import -noprompt -storepass changeit
 -trustcacerts -keystore $CATALINA_BASE/conf/keystore -alias client1
 -file client1.pem

configure.html#multilingualui
configure.html#multilingualui
configure.html#authenticate
configure.html#authenticate

DSpace System
Documentation: Installation

26

d. Now add another Connector tag to your server.xml Tomcat configuration file, like the example below. The
parts affecting or specific to SSL are shown in bold. (You may wish to change some details such as the port,
pathnames, and keystore password)

 <Connector port="8443"
 maxThreads="150" minSpareThreads="25"
 maxSpareThreads="75"
 enableLookups="false"
 disableUploadTimeout="true"
 acceptCount="100" debug="0"
 scheme="https" secure="true" sslProtocol="TLS"
 keystoreFile="conf/keystore" keystorePass="changeit" clientAuth="true"
 - ONLY if using client X.509 certs for authentication!
 truststoreFile="conf/keystore" trustedstorePass="changeit"
 />

Also, check that the default Connector is set up to redirect "secure" requests to the same port as your SSL
connector, e.g.:

<Connector port="8080"
 maxThreads="150" minSpareThreads="25"
 maxSpareThreads="75"
 enableLookups="false"
 redirectPort="8443"
 acceptCount="100" debug="0"
 />

2. Quick-and-dirty Procedure for Testing:

If you are just setting up a DSpace server for testing, or to experiment with HTTPS, then you don't need to get a real
server certificate. You can create a "self-signed" certificate for testing; web browsers will issue warnings before
accepting it but they will function exactly the same after that as with a "real" certificate.

In the examples below, $CATALINA_BASE is the directory under which your Tomcat is installed.

a. Optional -- ONLY if you don't already have a server certificate. Follow this sub-procedure to request a new,
signed server certificate from your Certifying Authority (CA):

• Create a new key pair under the alias name "tomcat". When generating your key, give the Distinguished
Name fields the appropriate values for your server and institution. CN should be the fully-qualified domain
name of your server host. Here is an example:

$JAVA_HOME/bin/keytool -genkey -alias tomcat -keyalg RSA -keysize
 1024 \
 -keystore $CATALINA_BASE/conf/keystore -storepass changeit
 -validity 365 \
 -dname 'CN=dspace.myuni.edu, OU=MIT Libraries, O=Massachusetts
 Institute of Technology, L=Cambridge, S=MA, C=US'

• Then, create a CSR (Certificate Signing Request) and send it to your Certifying Authority. They will send you
back a signed Server Certificate. This example command creates a CSR in the file tomcat.csr

DSpace System
Documentation: Installation

27

 $JAVA_HOME/bin/keytool -keystore $CATALINA_BASE/conf/keystore
 -storepass changeit \
 -certreq -alias tomcat -v -file tomcat.csr

• Before importing the signed certificate, you must have the CA's certificate in your keystore as a trusted
certificate. Get their certificate, and import it with a command like this (for the example mitCA.pem):

 $JAVA_HOME/bin/keytool -keystore $CATALINA_BASE/conf/keystore
 -storepass changeit \
 -import -alias mitCA -trustcacerts -file mitCA.pem

• Finally, when you get the signed certificate from your CA, import it into the keystore with a command like
the following example: (cert is in the file signed-cert.pem)

 $JAVA_HOME/bin/keytool -keystore $CATALINA_BASE/conf/keystore
 -storepass changeit \
 -import -alias tomcat -trustcacerts -file signed-cert.pem

Since you now have a signed server certificate in your keystore, you can, obviously, skip the next steps of
installing a signed server certificate and the server CA's certificate.

b. Create a Java keystore for your server with the password changeit, and install your server certificate under
the alias "tomcat". This assumes the certificate was put in the file server.pem:

 $JAVA_HOME/bin/keytool -genkey -alias tomcat -keyalg RSA -keystore
 $CATALINA_BASE/conf/keystore -storepass changeit

When answering the questions to identify the certificate, be sure to respond to "First and last name" with the
fully-qualified domain name of your server (e.g. test-dspace.myuni.edu). The other questions are not
important.

c. Optional -- ONLY if you need to accept client certificates for the X.509 certificate stackable authentication
module See the configuration section [configure.html#authenticate] for instructions on enabling the X.509
authentication method. Load the keystore with the CA (certifying authority) certificates for the authorities
of any clients whose certificates you wish to accept. For example, assuming the client CA certificate is in
client1.pem:

 $JAVA_HOME/bin/keytool -import -noprompt -storepass changeit
 -trustcacerts -keystore $CATALINA_BASE/conf/keystore -alias client1
 -file client1.pem

d. Follow the procedure in the section above to add another Connector tag, for the HTTPS port, to your
server.xml file.

To use SSL on Apache HTTPD with mod_jk:

If you choose Apache HTTPD [http://httpd.apache.org/] as your primary HTTP server, you can have it forward
requests to the Tomcat servlet container [http://tomcat.apache.org/] via Apache Jakarta Tomcat Connector [http://
tomcat.apache.org/connectors-doc/]. This can be configured to work over SSL as well. First, you must configure

configure.html#authenticate
configure.html#authenticate
http://httpd.apache.org/
http://httpd.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/connectors-doc/
http://tomcat.apache.org/connectors-doc/
http://tomcat.apache.org/connectors-doc/

DSpace System
Documentation: Installation

28

Apache for SSL; for Apache 2.0 see Apache SSL/TLS Encryption [http://httpd.apache.org/docs/2.0/ssl/] for
information about using mod_ssl [http://httpd.apache.org/docs/2.0/mod/mod_ssl.html].

If you are using X.509 Client Certificates for authentication: add these configuration options to the appropriate
httpd configuration file, e.g. ssl.conf, and be sure they are in force for the virtual host and namespace locations
dedicated to DSpace:

 ## SSLVerifyClient can be "optional" or
 "require"
 SSLVerifyClient optional
 SSLVerifyDepth 10
 SSLCACertificateFile
 path-to-your-client-CA-certificate
 SSLOptions StdEnvVars ExportCertData

Now consult the Apache Jakarta Tomcat Connector [http://tomcat.apache.org/connectors-doc/] documentation to
configure the mod_jk (note: NOTmod_jk2) module. Select the AJP 1.3 connector protocol. Also follow the
instructions there to configure your Tomcat server to respond to AJP.

To use SSL on Apache HTTPD with mod_webapp consult the DSpace 1.3.2 documentation. Apache have
deprecated the mod_webapp connector and recommend using mod_jk.

To use Jetty's HTTPS support consult the documentation for the relevant tool.

3.3.4. The Handle Server
First a few facts to clear up some common misconceptions:

• You don't have to use CNRI's Handle system. At the moment, you need to change the code a little to use something
else (e.g PURLs) but that should change soon.

• You'll notice that while you've been playing around with a test server, DSpace has apparently been creating handles
for you looking like hdl:123456789/24 and so forth. These aren't really Handles, since the global Handle
system doesn't actually know about them, and lots of other DSpace test installs will have created the same IDs.

They're only really Handles once you've registered a prefix with CNRI (see below) and have correctly set up the
Handle server included in the DSpace distribution. This Handle server communicates with the rest of the global
Handle infrastructure so that anyone that understands Handles can find the Handles your DSpace has created.

If you want to use the Handle system, you'll need to set up a Handle server. This is included with DSpace. Note that
this is not required in order to evaluate DSpace; you only need one if you are running a production service. You'll need
to obtain a Handle prefix from the central CNRI Handle site [http://www.handle.net/].

A Handle server runs as a separate process that receives TCP requests from other Handle servers, and issues resolution
requests to a global server or servers if a Handle entered locally does not correspond to some local content. The Handle
protocol is based on TCP, so it will need to be installed on a server that can broadcast and receive TCP on port 2641.

The Handle server code is included with the DSpace code in [dspace-source]/lib/handle.jar. Note: The
latest version of the handle.jar file is not included in the release due to licensing conditions changing between the
provided version and later versions. It is recommended you read the new license conditions [http://www.handle.net/
upgrade_6-2_DSpace.html] and decide whether you wish to update your installation's handle.jar. If you decide
to update, you should replace the existing handle.jar in [dspace-source]/lib with the new version and rebuild
your war files.

http://httpd.apache.org/docs/2.0/ssl/
http://httpd.apache.org/docs/2.0/ssl/
http://httpd.apache.org/docs/2.0/mod/mod_ssl.html
http://httpd.apache.org/docs/2.0/mod/mod_ssl.html
http://tomcat.apache.org/connectors-doc/
http://tomcat.apache.org/connectors-doc/
http://www.handle.net/
http://www.handle.net/
http://www.handle.net/upgrade_6-2_DSpace.html
http://www.handle.net/upgrade_6-2_DSpace.html
http://www.handle.net/upgrade_6-2_DSpace.html

DSpace System
Documentation: Installation

29

A script exists to create a simple Handle configuration - simply run [dspace]/bin/make-handle-config
after you've set the appropriate parameters in dspace.cfg. You can also create a Handle configuration
directly by following the installation instructions on handle.net [http://www.handle.net/hs_manual_18jan02/
server_manual_2.html], but with these changes:

• Instead of running:

java -cp /hs/bin/handle.jar net.handle.server.SimpleSetup /hs/svr_1

as directed in the Handle Server Administration Guide [http://hdl.handle.net/4263537/4093], you should run

 [dspace]/bin/dsrun net.handle.server.SimpleSetup
 [dspace]/handle-server

ensuring that [dspace]/handle-server matches whatever you have in dspace.cfg for the handle.dir
property.

• Edit the resulting [dspace]/handle-server/config.dct file to include the following lines in the
"server_config" clause:

"storage_type" = "CUSTOM"
"storage_class" =
 "org.dspace.handle.HandlePlugin"

This tells the Handle server to get information about individual Handles from the DSpace code.

Whichever approach you take, start the Handle server with [dspace]/bin/start-handle-server, as the
DSpace user. Once the configuration file has been generated, you will need to go to http://hdl.handle.net/4263537/5014
to upload the generated sitebndl.zip file. The upload page will ask you for your contact information. An administrator
will then create the naming authority/prefix on the root service (known as the Global Handle Registry), and notify you
when this has been completed. You will not be able to continue the handle server installation until you receive further
information concerning your naming authority.

Note that since the DSpace code manages individual Handles, administrative operations such as Handle creation and
modification aren't supported by DSpace's Handle server.

If you need to update the handle prefix on items created before the CNRI registration process you can run the
[dspace]/bin/update-handle-prefix script. You may need to do this if you loaded items prior to
CNRI registration (e.g. setting up a demonstration system prior to migrating it to production). The script takes the
current and new prefix as parameters. For example:

[dspace]/bin/update-handle-prefix 123456789 1303

will change any handles currently assigned prefix 123456789 to prefix 1303, so for example handle 123456789/23
will be updated to 1303/23 in the database.

3.3.5. Google and HTML sitemaps
To aid web crawlers index the content within your repository, you can make use of sitemaps. There are currently two
forms of sitemaps included in DSpace; Google sitemaps and HTML sitemaps.

Sitemaps allow DSpace to expose it's content without the crawlers having to index every page. HTML sitemaps provide
a list of all items, collections and communities in HTML format, whilst Google sitemaps provide the same information
in gzipped XML format.

http://www.handle.net/hs_manual_18jan02/server_manual_2.html
http://www.handle.net/hs_manual_18jan02/server_manual_2.html
http://www.handle.net/hs_manual_18jan02/server_manual_2.html
http://hdl.handle.net/4263537/4093
http://hdl.handle.net/4263537/4093
http://hdl.handle.net/4263537/5014

DSpace System
Documentation: Installation

30

To generate the sitemaps, you need to run [dspace]/bin/generate-sitemaps This creates the sitemaps in
[dspace]/sitemaps/

The sitemaps can be accessed from the following URLs:

• http://dspace.example.com/dspace/sitemap - Index sitemap

• http://dspace.example.com/dspace/sitemap?map=0 - First list of items (up to 50,000)

• http://dspace.example.com/dspace/sitemap?map=n - Subsequent lists of items (e.g. 50,0001 to 100,000) etc...

HTML sitemaps follow the same procedure:

• http://dspace.example.com/dspace/htmlmap - Index sitemap

• etc...

When running [dspace]/bin/generate-sitemaps the script informs Google that the sitemaps have been
updated. For this update to register correctly, you must first register your Google sitemap index page (/dspace/
sitemap) with Google at http://www.google.com/webmasters/sitemaps/. If your DSpace server requires the use of
a HTTP proxy to connect to the Internet, ensure that you have set http.proxy.host and http.proxy.port
in [dspace]/config/dspace.cfg

The URL for pinging Google, and in future, other search engines, is configured in [dspace-space]/config/
dspace.cfg using the sitemap.engineurls setting where you can provide a comma-separated list of URLs
to 'ping'.

You can generate the sitemaps automatically every day using an additional cron job:

Generate sitemaps

0 6 * * * [dspace]/bin/generate-sitemaps

3.4. Windows Installation

3.4.1. Pre-requisite Software
You'll need to install this pre-requisite software:

• Java SDK 1.5 [http://java.sun.com/] or later (standard SDK is fine, you don't need J2EE)

• PostgreSQL 8.x for Windows [http://www.postgresql.org/ftp/] OR Oracle 9 or later [http://www.oracle.com/
database/].

• If you install PostgreSQL, it's recommended to select to install the pgAdmin III tool

• Apache Ant 1.6.2 or later [http://ant.apache.org/]. Unzip the package in C:\ and add C:\apache-
ant-1.6.2\bin to the PATH environment variable. For Ant to work properly, you should ensure that
JAVA_HOME is set.

• Jakarta Tomcat 5.x or later [http://tomcat.apache.org/]

• Apache Maven 2.0.8 or later [http://maven.apache.org/]

http://www.google.com/webmasters/sitemaps/
http://java.sun.com/
http://java.sun.com/
http://www.postgresql.org/ftp/
http://www.postgresql.org/ftp/
http://www.oracle.com/database/
http://www.oracle.com/database/
http://www.oracle.com/database/
http://ant.apache.org/
http://ant.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://maven.apache.org/
http://maven.apache.org/

DSpace System
Documentation: Installation

31

3.4.2. Installation Steps
1. Download the DSpace source from SourceForge [http://sourceforge.net/projects/dspace] and untar it (WinZip

[http://www.winzip.com/] will do this)

2. Ensure the PostgreSQL service is running, and then run pgAdmin III (Start -> PostgreSQL 8.0 -> pgAdmin III).
Connect to the local database as the postgres user and:

• Create a 'Login Role' (user) called dspace with the password dspace

• Create a database called dspace owned by the user dspace, with UTF-8 encoding

3. Update paths in [dspace-source]\dspace\config\dspace.cfg. Note: Use forward slashes / for path
separators, though you can still use drive letters, e.g.:

dspace.dir = C:/DSpace

Make sure you change all of the parameters with file paths to suit, specifically:

 dspace.dir
 config.template.log4j.properties
 config.template.log4j-handle-plugin.properties
 config.template.oaicat.properties
 assetstore.dir
 log.dir
 upload.temp.dir
 report.dir
 handle.dir

4. Create the directory for the DSpace installation (e.g. C:\DSpace)

5. Generate the DSpace installation package by running the following from commandline (cmd) from your [dspace-
source]/dspace/ directory:

mvn package

Note #1: This will generate the DSpace installation package in your [dspace-source]/dspace/target/
dspace-[version]-build.dir/ directory.

Note #2: Without any extra arguments, the DSpace installation package is initialized for PostgreSQL.

If you want to use Oracle instead, you should build the DSpace installation package as follows:

mvn -Ddb.name=oracle package

6. Initialize the DSpace database and install DSpace to [dspace] (e.g. C:\DSpace) by running the
following from commandline from your [dspace-source]/dspace/target/dspace-[version]-
build.dir/ directory:

ant fresh_install

Note: to see a complete list of build targets, run

http://sourceforge.net/projects/dspace
http://sourceforge.net/projects/dspace
http://www.winzip.com/
http://www.winzip.com/

DSpace System
Documentation: Installation

32

ant help

7. Create an administrator account, by running the following from your [dspace] (e.g. C:\DSpace) directory

[dspace]\bin\dsrun org.dspace.administer.CreateAdministrator

and enter the required information

8. Copy the Web application directories from [dspace]\webapps\ to Tomcat's webapps dir, which should be
somewhere like C:\Program Files\Apache Software Foundation\Tomcat 5.5\webapps

• Alternatively, Tell your Tomcat installation where to find your DSpace web application(s). As an example, in
the <Host> section of your [tomcat]/conf/server.xml you could add lines similar to the following
(but replace [dspace] with your installation location):

<!-- DEFINE A CONTEXT PATH FOR DSpace JSP User Interface -->
<Context path="/jspui" docBase="[dspace]\webapps\jspui" debug="0"
 reloadable="true" cachingAllowed="false"
 allowLinking="true"/>

<!-- DEFINE A CONTEXT PATH FOR DSpace OAI User Interface -->
<Context path="/oai" docBase="[dspace]\webapps\oai" debug="0"
 reloadable="true" cachingAllowed="false"
 allowLinking="true"/>

9. Start the Tomcat service

10.Browse to either http://localhost:8080/jspui or http://localhost:8080/xmlui. You should
see the DSpace home page for either the JSPUI or XMLUI, respectively.

3.5. Checking Your Installation
TODO

3.6. Known Bugs
In any software project of the scale of DSpace, there will be bugs. Sometimes, a stable version of DSpace includes
known bugs. We do not always wait until every known bug is fixed before a release. If the software is sufficiently
stable and an improvement on the previous release, and the bugs are minor and have known workarounds, we release
it to enable the community to take advantage of those improvements.

The known bugs in a release are documented in the KNOWN_BUGS file in the source package.

Please see the DSpace bug tracker [#] for further information on current bugs, and to find out if the bug has subsequently
been fixed. This is also where you can report any further bugs you find.

3.7. Common Problems
In an ideal world everyone would follow the above steps and have a fully functioning DSpace. Of couse, in the real
world it doesn't always seem to work out that way. This section lists common problems that people encounter when
installing DSpace, and likely causes and fixes. This is likely to grow over time as we learn about users' experiences.

#
#

DSpace System
Documentation: Installation

33

Database errors occur when you run ant fresh_install
There are two common errors that occur. If your error looks like this--

[java] 2004-03-25 15:17:07,730 INFO
 org.dspace.storage.rdbms.InitializeDatabase @ Initializing Database
[java] 2004-03-25 15:17:08,816 FATAL
 org.dspace.storage.rdbms.InitializeDatabase @ Caught exception:
[java] org.postgresql.util.PSQLException: Connection refused. Check
 that the hostname and port are correct and that the postmaster is
 accepting TCP/IP connections.
[java] at
 org.postgresql.jdbc1.AbstractJdbc1Connection.openConnection(AbstractJd
bc1Connection.java:204)
[java] at org.postgresql.Driver.connect(Driver.java:139)

it usually means you haven't yet added the relevant configuration parameter to your PostgreSQL configuration
(see above), or perhaps you haven't restarted PostgreSQL after making the change. Also, make sure that
the db.username and db.password properties are correctly set in [dspace-source]/config/
dspace.cfg.

An easy way to check that your DB is working OK over TCP/IP is to try this on the command line:

psql -U dspace -W -h localhost

Enter the dspacedatabase password, and you should be dropped into the psql tool with a dspace=> prompt.

Another common error looks like this:

[java] 2004-03-25 16:37:16,757 INFO
 org.dspace.storage.rdbms.InitializeDatabase @ Initializing Database
[java] 2004-03-25 16:37:17,139 WARN
 org.dspace.storage.rdbms.DatabaseManager @ Exception initializing DB
 pool
[java] java.lang.ClassNotFoundException: org.postgresql.Driver
[java] at java.net.URLClassLoader$1.run(URLClassLoader.java:198)
[java] at java.security.AccessController.doPrivileged(Native
 Method)
[java] at
 java.net.URLClassLoader.findClass(URLClassLoader.java:186)

This means that the PostgreSQL JDBC driver is not present in [dspace-source]/lib. See above.

Tomcat doesn't shut down
If you're trying to tweak Tomcat's configuration but nothing seems to make a difference to the error you're seeing,
you might find that Tomcat hasn't been shutting down properly, perhaps because it's waiting for a stale connection
to close gracefully which won't happen. To see if this is the case, try:

ps -ef | grep java

and look for Tomcat's Java processes. If they stay arround after running Tomcat's shutdown.sh script, trying
killing them (with -9 if necessary), then starting Tomcat again.

DSpace System
Documentation: Installation

34

Database connections don't work, or accessing DSpace takes forever
If you find that when you try to access a DSpace Web page and your browser sits there connecting, or if the
database connections fail, you might find that a 'zombie' database connection is hanging around preventing normal
operation. To see if this is the case, try:

ps -ef | grep postgres

You might see some processes like this

dspace 16325 1997 0 Feb 14 ? 0:00 postgres: dspace dspace
 127.0.0.1 idle in transaction

This is normal--DSpace maintains a 'pool' of open database connections, which are re-used to avoid the overhead
of constantly opening and closing connections. If they're 'idle' it's OK; they're waiting to be used. However
sometimes, if something went wrong, they might be stuck in the middle of a query, which seems to prevent other
connections from operating, e.g.:

dspace 16325 1997 0 Feb 14 ? 0:00 postgres: dspace dspace
 127.0.0.1 SELECT

This means the connection is in the middle of a SELECT operation, and if you're not using DSpace right that
instant, it's probably a 'zombie' connection. If this is the case, try killing the process, and stopping and restarting
Tomcat.

35

Chapter 4. DSpace System
Documentation: Updating a DSpace
Installation
This section describes how to update a DSpace installation from one version to the next. Details of the differences
between the functionality of each version are given in the Version History [history.html] section.

4.1. Updating From 1.4.2 to 1.5
The changes in DSpace 1.5 are significant and wide spread involving database schema upgrades, code restructuring,
completely new user and programatic interfaces, and new build system.

In the notes below [dspace] refers to the install directory for your existing DSpace installation, and [dspace-
source] to the source directory for DSpace 1.5. Whenever you see these path references, be sure to replace them
with the actual path names on your local system.

1. Backup your DSpace First and foremost, make a complete backup of your system, including:

• A snapshot of the database

• The asset store ([dspace]/assetstore by default)

• Your configuration files and customizations to DSpace

• Your statistics scripts ([dspace]/bin/stat*) which contain customizable dates

2. Download DSpace 1.5 Get the new DSpace 1.5 source code either as a download from SourceForge [#] or check it
out directly from the SVN code repository [#]. If you downloaded DSpace do not unpack it on top of your existing
installation.

3. Build DSpace The build process has radically changed for DSpace 1.5. With this new release the build system has
moved to a maven-based system enabling the various projects (JSPUI, XMLUI, OAI, and Core API) into separate
projects. See the Installation section [install.html] for more information on building DSpace using the new maven-
based build system. Run the following commands to compile DSpace.

 cd [dspace-source]/dspace/;
 mvn package

You will find the result in [dspace-source]/dspace/target/dspace-1.5-build.dir/; inside this
directory is the compiled binary distribution of DSpace.

4. Stop Tomcat Take down your servlet container, for Tomcat use the bin/shutdown.sh script.

5. Update dspace.cfg Serveral new parameters need to be added to your [dspace]/config/dspace.cfg.
While it is advisable to start with a fresh DSpace 1.5 dspace.cfg configuration file here are the minimum set
of parameters that need to be added to an old DSpace 1.4.2 configuration.

Stackable Authentication Methods
#

history.html
history.html
#
#
#
#
install.html
install.html

DSpace System Documentation:
Updating a DSpace Installation

36

Stack of authentication methods
(See org.dspace.authenticate.AuthenticationManager)
Note when upgrading you should remove the parameter:
plugin.sequence.org.dspace.eperson.AuthenticationMethod
plugin.sequence.org.dspace.authenticate.AuthenticationMethod = \
 org.dspace.authenticate.PasswordAuthentication

JSPUI item sytle plugin
#
Specify which strategy use for select the style for an item
plugin.single.org.dspace.app.webui.util.StyleSelection = \

 org.dspace.app.webui.util.CollectionStyleSelection

Browse Configuration
#
The following configuration will mimic the previous
behavior exhibited by DSpace 1.4.2. For alternative
configurations see the manual.

Browse indexes
webui.browse.index.1 = dateissued:item:dateissued
webui.browse.index.2 = author:metadata:dc.contributor.*:text
webui.browse.index.3 = title:item:title
webui.browse.index.4 = subject:metadata:dc.subject.*:text

Sorting options
webui.itemlist.sort-option.1 = title:dc.title:title
webui.itemlist.sort-option.2 = dateissued:dc.date.issued:date
webui.itemlist.sort-option.3 =
 dateaccessioned:dc.date.accessioned:date

Recent submissions
recent.submissions.count = 5

Itemmapper browse index
itemmap.author.index = author

Recent submission processor plugins
plugin.sequence.org.dspace.plugin.CommunityHomeProcessor = \
 org.dspace.app.webui.components.RecentCommunitySubmissions
plugin.sequence.org.dspace.plugin.CollectionHomeProcessor = \
 org.dspace.app.webui.components.RecentCollectionSubmissions

Content Inline Disposition Threshold
#
Set the max size of a bitstream that can be served inline
Use -1 to force all bitstream to be served inline
webui.content_disposition_threshold = -1
webui.content_disposition_threshold = 8388608

Event System Configuration
#

DSpace System Documentation:
Updating a DSpace Installation

37

default synchronous dispatcher (same behavior as traditional
 DSpace)
event.dispatcher.default.class = org.dspace.event.BasicDispatcher
event.dispatcher.default.consumers = search, browse, eperson

consumer to maintain the search index
event.consumer.search.class = org.dspace.search.SearchConsumer
event.consumer.search.filters =
 Item|Collection|Community|Bundle+Create|Modify|Modify_Metadata|Delete:
Bundle+Add|Remove

consumer to maintain the browse index
event.consumer.browse.class = org.dspace.browse.BrowseConsumer
event.consumer.browse.filters =
 Item+Create|Modify|Modify_Metadata:Collection+Add|Remove

consumer related to EPerson changes
event.consumer.eperson.class = org.dspace.eperson.EPersonConsumer
event.consumer.eperson.filters = EPerson+Create

6. Add xmlui.xconf Manakin configuration The new Manakin user interface available with DSpace 1.5 requires
an extra configuration file that you will need to manually copy it over to your configuration directory.

cp [dspace-source]/dspace/config/xmlui.xconf
 [dspace]/config/xmlui.xconf

7. Add item-submission.xml and item-submission.dtd configurable submission configuration The
new configurable submission system that enables an administrator to re-arrange, or add/remove item submission
steps requires this configuration file. You need to manually copy it over to your configuration directory.

cp [dspace-source]/dspace/config/item-submission.xml
 [dspace]/config/item-submission.xml

cp [dspace-source]/dspace/config/item-submission.dtd
 [dspace]/config/item-submission.dtd

8. Add new input-forms.xml and input-forms.dtd configurable submission configuration The input-
forms.xml now has an included dtd reference to support validation. You'll need to merge in your changes to both
file/and or copy them into place.

cp [dspace-source]/dspace/config/input-forms.xml
 [dspace]/config/input-forms.xml

cp [dspace-source]/dspace/config/input-forms.dtd
 [dspace]/config/inputforms.dtd

9. Add sword-swap-ingest.xsl and xhtml-head-item.properties crosswalk files New crosswalk
files are required to support SWORD and the inclusion of metadata into the head of items.

cp [dspace-source]/dspace/config/crosswalks/sword-swap-ingest.xsl
 [dspace]/config/crosswalks/sword-swap-ingest.xsl

DSpace System Documentation:
Updating a DSpace Installation

38

cp
 [dspace-source]/dspace/config/crosswalks/xhtml-head-item.properties
 [dspace]/config/crosswalks/xhtml-head-item.properties

10.Add registration_notify email files A new configuration option (registration.notify =
you@your-email.com) can be set to send a notification email whenever a new user registers to use your
DSpace. The email template for this email needs to be copied.

cp [dspace-source]/dspace/config/emails/registration_notify
 [dspace]/config/emails/registration_notify

11.Update the database The database schema needs updating. SQL files contain the relevant updates are provided,
note if you have made any local customizations to the database schema you should consult these updates and make
sure they will work for you.

• For PostgreSQL

psql -U [dspace-user] -f [dspace-source]/dspace/etc/
database_schema_14-15.sql [database-name]

• For Oracle

[dspace-source]/dspace/etc/oracle/database_schema_142-15.sql contains the
commands necessary to upgrade your database schema on oracle.

12.Apply any customizations If you have made any local customizations to your DSpace installation they
will need to be migrated over to the new DSpace. Commonly these modifications are made to "JSP" pages
located inside the [dspace 1.4.2]/jsp/local directory. These should be moved [dspace-source]/
dspace/modules/jspui/src/main/webapp/ in the new build structure. See Customizing the JSP Pages
[configure.html#jspui-jsp] for more information.

13.Update DSpace Update the DSpace installed directory with new code and libraries. Inside the [dspace-
source]/dspace/target/dspace-1.5-build.dir/ directory run:

cd [dspace-source]/dspace/target/dspace-1.5-build.dir/;
ant -Dconfig=[dspace]/config/dspace.cfg update

14.Update the Metadata Registry New Metadata Registry updates are required to support SWORD.

cp [dspace-source]/dspace/config/registries/sword-metadata.xml
 [dspace]/config/registries/sword-metadata.xml;

[dspace]/bin/dsrun org.dspace.administer.MetadataImporter -f
 [dspace]/config/registries/sword-metadata.xml

15.Rebuild browse and search indexes One of the major new features of DSpace 1.5 is the browse system which
necessitates that the indexes be recreated. To do this run the following command from your DSpace installed
directory:

configure.html#jspui-jsp
configure.html#jspui-jsp

DSpace System Documentation:
Updating a DSpace Installation

39

[dspace]/bin/index-init

16.Update statistics scripts The statistics scripts have been rewritten for DSpace 1.5. Prior to 1.5 they were written
in Perl, but have been rewritten in Java to avoid having to install Perl. First, make a note of the dates you have
specified in your statistics scripts for the statistics to run from. You will find these in [dspace]/bin/stat-
initial, as $start_year and $start_month. Note down these values.

Copy the new stats scripts:

 cp [dspace-source]/dspace/bin/stat* [dspace]/bin/

Then edit your statistics configuration file with the start details. Add the follwing to [dspace]/conf/
dstat.cfg

the year and month to start creating reports from

- year as four digits (e.g. 2005)

- month as a number (e.g. January is 1, December is 12)

start.year = 2005

start.month = 1

Replace '2005' and '1' as with the values you noted down.

dstat.cfg also used to contain the hostname and service name as displayed at the top of the statistics. These
values are now taken from dspace.cfg so you can remove host.name and host.url from dstat.cfg if
you wish. The values now used are dspace.hostname and dspace.name from dspace.cfg

17.Deploy webapplications Copy the webapplications files from your [dspace]/webapps directory to the subdirectory
of your servlet container (e.g. Tomcat):

cp [dspace]/webapps/* [tomcat]/webapps/

18.Restart Tomcat Restart your servlet container, for Tomcat use the bin/startup.sh script.

4.2. Updating From 1.4.1 to 1.4.2
See Updating From 1.4 to 1.4.x; the same instructions apply.

4.3. Updating From 1.4 to 1.4.x
The changes in 1.4.x releases are only code and configuration changes so the update is simply a matter of rebuilding
the wars and slight changes to your config file.

In the notes below [dspace] refers to the install directory for your existing DSpace installation, and
[dspace-1.4.x-source] to the source directory for DSpace 1.4.x. Whenever you see these path references, be
sure to replace them with the actual path names on your local system.

1. Get the new DSpace 1.4.x source code from the DSpace page on SourceForge [http://sourceforge.net/projects/
dspace/] and unpack it somewhere. Do not unpack it on top of your existing installation!!

http://sourceforge.net/projects/dspace/
http://sourceforge.net/projects/dspace/
http://sourceforge.net/projects/dspace/

DSpace System Documentation:
Updating a DSpace Installation

40

2. Copy the PostgreSQL driver JAR to the source tree. For example:

cd [dspace]/lib
cp postgresql.jar [dspace-1.4.x-source]/lib

3. Note: Licensing conditions for the handle.jar file have changed. As a result, the latest version of the
handle.jar file is not included in this distribution. It is recommended you read the new license conditions
[http://www.handle.net/upgrade_6-2_DSpace.html] and decide whether you wish to update your installation's
handle.jar. If you decide to update, you should replace the existing handle.jar in [dspace-1.4.x-source]/
lib with the new version.

4. Take down Tomcat (or whichever servlet container you're using).

5. A new configuration item webui.html.max-depth-guess has been added to avoid infinite URL spaces.
Add the following to the dspace.cfg file:

Multi-file HTML document/site settings
#
When serving up composite HTML items, how deep can the request be
 for us to
serve up a file with the same name?
#
e.g. if we receive a request for "foo/bar/index.html"
and we have a bitstream called just "index.html"
we will serve up that bitstream for the request if
 webui.html.max-depth-guess
is 2 or greater. If webui.html.max-depth-guess is 1 or less, we
 would not
serve that bitstream, as the depth of the file is greater.
#
If webui.html.max-depth-guess is zero, the request filename and
 path must
always exactly match the bitstream name. Default value is 3.
#
webui.html.max-depth-guess = 3

If webui.html.max-depth-guess is not present in dspace.cfg the default value is used. If archiving
entire web sites or deeply nested HTML documents it is advisable to change the default to a higher value more
suitable for these types of materials.

6. Your 'localized' JSPs (those in jsp/local) now need to be maintained in the source directory. If you have locally
modified JSPs in your [dspace]/jsp/local directory, you will need to merge the changes in the new 1.4.x
versions into your locally modified ones. You can use the diff command to compare your JSPs against the 1.4.x
versions to do this. You can also check against the DSpace CVS [http://dspace.cvs.sourceforge.net/dspace/].

7. In [dspace-1.4.x-source] run:

ant -Dconfig= [dspace]/config/dspace.cfg update

8. Copy the .war Web application files in [dspace-1.4.x-source]/build to the webapps sub-directory
of your servlet container (e.g. Tomcat). e.g.:

http://www.handle.net/upgrade_6-2_DSpace.html
http://www.handle.net/upgrade_6-2_DSpace.html
http://dspace.cvs.sourceforge.net/dspace/
http://dspace.cvs.sourceforge.net/dspace/

DSpace System Documentation:
Updating a DSpace Installation

41

cp [dspace-1.4.x-source]/build/*.war
 [tomcat]/webapps

If you're using Tomcat, you need to delete the directories corresponding to the old .war files. For example,
if dspace.war is installed in [tomcat]/webapps/dspace.war, you should delete the [tomcat]/
webapps/dspace directory. Otherwise, Tomcat will continue to use the old code in that directory.

9. Restart Tomcat.

4.4. Updating From 1.3.2 to 1.4.x
1. First and foremost, make a complete backup of your system, including:

• A snapshot of the database

• The asset store ([dspace]/assetstore by default)

• Your configuration files and localized JSPs

2. Download the latest DSpace 1.4.x source bundle [http://sourceforge.net/projects/dspace/] and unpack it in a suitable
location (not over your existing DSpace installation or source tree!)

3. Copy the PostgreSQL driver JAR to the source tree. For example:

cd [dspace]/lib
cp postgresql.jar [dspace-1.4.x-source]/lib

4. Note: Licensing conditions for the handle.jar file have changed. As a result, the latest version of the
handle.jar file is not included in this distribution. It is recommended you read the new license conditions
[http://www.handle.net/upgrade_6-2_DSpace.html] and decide whether you wish to update your installation's
handle.jar. If you decide to update, you should replace the existing handle.jar in [dspace-1.4.x-source]/
lib with the new version.

5. Take down Tomcat (or whichever servlet container you're using).

6. Your DSpace configuration will need some updating:

• In dspace.cfg, paste in the following lines for the new stackable authentication feature, the new method for
managing Media Filters, and the Checksum Checker.

Stackable Authentication Methods
Stack of authentication methods
(See org.dspace.eperson.AuthenticationManager)
plugin.sequence.org.dspace.eperson.AuthenticationMethod = \
 org.dspace.eperson.PasswordAuthentication

Example of configuring X.509 authentication
(to use it, add org.dspace.eperson.X509Authentication to stack)

method 1, using keystore
#authentication.x509.keystore.path = /var/local/tomcat/conf/keystore
#authentication.x509.keystore.password = changeit

http://sourceforge.net/projects/dspace/
http://sourceforge.net/projects/dspace/
http://www.handle.net/upgrade_6-2_DSpace.html
http://www.handle.net/upgrade_6-2_DSpace.html

DSpace System Documentation:
Updating a DSpace Installation

42

method 2, using CA certificate
#authentication.x509.ca.cert = ${dspace.dir}/config/mitClientCA.der

Create e-persons for unknown names in valid certificates?
#authentication.x509.autoregister = true

Media Filter plugins (through PluginManager)

plugin.sequence.org.dspace.app.mediafilter.MediaFilter = \
 org.dspace.app.mediafilter.PDFFilter,
 org.dspace.app.mediafilter.HTMLFilter, \
 org.dspace.app.mediafilter.WordFilter,
 org.dspace.app.mediafilter.JPEGFilter
to enable branded preview: remove last line above, and uncomment 2
 lines below
org.dspace.app.mediafilter.WordFilter,
 org.dspace.app.mediafilter.JPEGFilter, \
org.dspace.app.mediafilter.BrandedPreviewJPEGFilter

filter.org.dspace.app.mediafilter.PDFFilter.inputFormats = Adobe PDF
filter.org.dspace.app.mediafilter.HTMLFilter.inputFormats = HTML,
 Text
filter.org.dspace.app.mediafilter.WordFilter.inputFormats = Microsoft
 Word
filter.org.dspace.app.mediafilter.JPEGFilter.inputFormats = GIF,
 JPEG, image/png
filter.org.dspace.app.mediafilter.BrandedPreviewJPEGFilter.inputFormat
s = GIF, JPEG, image/png

Settings for Item Preview
webui.preview.enabled = false
max dimensions of the preview image
webui.preview.maxwidth = 600
webui.preview.maxheight = 600
the brand text
webui.preview.brand = My Institution Name
an abbreviated form of the above text, this will be used
when the preview image cannot fit the normal text
webui.preview.brand.abbrev = MyOrg
the height of the brand
webui.preview.brand.height = 20
font settings for the brand text
webui.preview.brand.font = SansSerif
webui.preview.brand.fontpoint = 12
#webui.preview.dc = rights

Checksum Checker Settings
Default dispatcher in case none specified
plugin.single.org.dspace.checker.BitstreamDispatcher=org.dspace.checke
r.SimpleDispatcher
Standard interface implementations. You shouldn't need to tinker

DSpace System Documentation:
Updating a DSpace Installation

43

 with these.
plugin.single.org.dspace.checker.ReporterDAO=org.dspace.checker.Report
erDAOImpl

check history retention
checker.retention.default=10y
checker.retention.CHECKSUM_MATCH=8w

• If you have customised advanced search fields (search.index.n fields, note that you now need to include
the schema in the values. Dublin Core is specifed as dc. So for example, if in 1.3.2 you had:

search.index.1 = title:title.alternative

That needs to be changed to:

search.index.1 = title:dc.title.alternative

• If you use LDAP or X509 authentication, you'll need to add
org.dspace.eperson.LDAPAuthentication or
org.dspace.eperson.X509Authentication respectively. See also configuring custom authentication
code [configure.html#authenticate].

• If you have custom Media Filters, note that these are now configured through dspace.cfg (instead of
mediafilter.cfg which is obsolete.)

• Also, take a look through the default dspace.cfg file supplied with DSpace 1.4.x, as this contains
configuration options for various new features you might like to use. In general, these new features default to 'off'
and you'll need to add configuration properties as described in the default 1.4.x dspace.cfg to activate them.

7. Your 'localized' JSPs (those in jsp/local) now need to be maintained in the source directory. If you have locally
modified JSPs in your [dspace]/jsp/local directory, you will need to merge the changes in the new 1.4.x
versions into your locally modified ones. You can use the diff command to compare your JSPs against the 1.4.x
versions to do this. You can also check against the DSpace CVS [http://dspace.cvs.sourceforge.net/dspace/].

8. In [dspace-1.4.x-source] run:

ant -Dconfig= [dspace]/config/dspace.cfg update

9. The database schema needs updating. SQL files containing the relevant file are provided. If you've modified the
schema locally, you may need to check over this and make alterations.

For PostgreSQL
[dspace-1.4.x-source]/etc/database_schema_13-14.sql contains the SQL commands to
achieve this for PostgreSQL. To apply the changes, go to the source directory, and run:

psql -f etc/database_schema_13-14.sql [DSpace database name] -h localhost

For Oracle
[dspace-1.4.x-source]/etc/oracle/database_schema_13-14.sql should be run on the
DSpace database to update the schema.

10.Rebuild the search indices:

[dspace]/bin/index-all

configure.html#authenticate
configure.html#authenticate
configure.html#authenticate
http://dspace.cvs.sourceforge.net/dspace/
http://dspace.cvs.sourceforge.net/dspace/

DSpace System Documentation:
Updating a DSpace Installation

44

11.Copy the .war Web application files in [dspace-1.4-source]/build to the webapps sub-directory of
your servlet container (e.g. Tomcat). e.g.:

cp [dspace-1.4-source]/build/*.war
 [tomcat]/webapps

If you're using Tomcat, you need to delete the directories corresponding to the old .war files. For example,
if dspace.war is installed in [tomcat]/webapps/dspace.war, you should delete the [tomcat]/
webapps/dspace directory. Otherwise, Tomcat will continue to use the old code in that directory.

12.Restart Tomcat.

4.5. Updating From 1.3.1 to 1.3.2
The changes in 1.3.2 are only code changes so the update is simply a matter of rebuilding the wars.

In the notes below [dspace] refers to the install directory for your existing DSpace installation, and
[dspace-1.3.2-source] to the source directory for DSpace 1.3.2. Whenever you see these path references, be
sure to replace them with the actual path names on your local system.

1. Get the new DSpace 1.3.2 source code from the DSpace page on SourceForge [http://sourceforge.net/projects/
dspace/] and unpack it somewhere. Do not unpack it on top of your existing installation!!

2. Copy the PostgreSQL driver JAR to the source tree. For example:

cd [dspace]/lib
cp postgresql.jar [dspace-1.3.2-source]/lib

3. Take down Tomcat (or whichever servlet container you're using).

4. Your 'localized' JSPs (those in jsp/local) now need to be maintained in the source directory. If you have locally
modified JSPs in your [dspace]/jsp/local directory, you will need to merge the changes in the new 1.3.2
versions into your locally modified ones. You can use the diff command to compare the 1.3.1 and 1.3.2 versions
to do this.

5. In [dspace-1.3.2-source] run:

ant -Dconfig= [dspace]/config/dspace.cfg update

6. Copy the .war Web application files in [dspace-1.3.2-source]/build to the webapps sub-directory
of your servlet container (e.g. Tomcat). e.g.:

cp [dspace-1.3.2-source]/build/*.war
 [tomcat]/webapps

If you're using Tomcat, you need to delete the directories corresponding to the old .war files. For example,
if dspace.war is installed in [tomcat]/webapps/dspace.war, you should delete the [tomcat]/
webapps/dspace directory. Otherwise, Tomcat will continue to use the old code in that directory.

7. Restart Tomcat.

http://sourceforge.net/projects/dspace/
http://sourceforge.net/projects/dspace/
http://sourceforge.net/projects/dspace/

DSpace System Documentation:
Updating a DSpace Installation

45

4.6. Updating From 1.2.x to 1.3.x
In the notes below [dspace] refers to the install directory for your existing DSpace installation, and
[dspace-1.3.x-source] to the source directory for DSpace 1.3.x. Whenever you see these path references, be
sure to replace them with the actual path names on your local system.

1. Step one is, of course, to back up all your data before proceeding!! Include all of the contents of [dspace] and
the PostgreSQL database in your backup.

2. Get the new DSpace 1.3.x source code from the DSpace page on SourceForge [http://sourceforge.net/projects/
dspace/] and unpack it somewhere. Do not unpack it on top of your existing installation!!

3. Copy the PostgreSQL driver JAR to the source tree. For example:

cd [dspace]/lib

cp postgresql.jar [dspace-1.2.2-source]/lib

4. Take down Tomcat (or whichever servlet container you're using).

5. Remove the old version of xerces.jar from your installation, so it is not inadvertently later used:

rm [dspace]/lib/xerces.jar

6. Install the new config files by moving dstat.cfg and dstat.map from [dspace-1.3.x-source]/
config/ to [dspace]/config

7. You need to add new parameters to your [dspace]/dspace.cfg:

Statistical Report Configuration Settings

should the stats be publicly available? should be set to false if
 you only
want administrators to access the stats, or you do not intend to
 generate
any
report.public = false

directory where live reports are stored
report.dir = /dspace/reports/

8. Build and install the updated DSpace 1.3.x code. Go to the [dspace-1.3.x-source] directory, and run:

ant -Dconfig=[dspace]/config/dspace.cfg update

9. You'll need to make some changes to the database schema in your PostgreSQL database. [dspace-1.3.x-
source]/etc/database_schema_12-13.sql contains the SQL commands to achieve this. If you've
modified the schema locally, you may need to check over this and make alterations.

To apply the changes, go to the source directory, and run:

psql -f etc/database_schema_12-13.sql [DSpace database name] -h localhost

10.Customise the stat generating statistics as per the instructions in System Statistical Reports
[configure.html#statistics]

http://sourceforge.net/projects/dspace/
http://sourceforge.net/projects/dspace/
http://sourceforge.net/projects/dspace/
configure.html#statistics
configure.html#statistics

DSpace System Documentation:
Updating a DSpace Installation

46

11.Initialise the statistics using:

[dspace]/bin/stat-initial

[dspace]/bin/stat-general

[dspace]/bin/stat-report-initial

[dspace]/bin/stat-report-general

12.Rebuild the search indices:

[dspace]/bin/index-all

13.Copy the .war Web application files in [dspace-1.3.x-source]/build to the webapps sub-directory
of your servlet container (e.g. Tomcat). e.g.:

cp [dspace-1.3.x-source]/build/*.war [tomcat]/webapps

14.Restart Tomcat.

4.7. Updating From 1.2.1 to 1.2.2
The changes in 1.2.2 are only code and config changes so the update should be fairly simple.

In the notes below [dspace] refers to the install directory for your existing DSpace installation, and
[dspace-1.2.2-source] to the source directory for DSpace 1.2.2. Whenever you see these path references, be
sure to replace them with the actual path names on your local system.

1. Get the new DSpace 1.2.2 source code from the DSpace page on SourceForge [http://sourceforge.net/projects/
dspace/] and unpack it somewhere. Do not unpack it on top of your existing installation!!

2. Copy the PostgreSQL driver JAR to the source tree. For example:

cd [dspace]/lib
cp postgresql.jar [dspace-1.2.2-source]/lib

3. Take down Tomcat (or whichever servlet container you're using).

4. Your 'localized' JSPs (those in jsp/local) now need to be maintained in the source directory. If you have locally
modified JSPs in your [dspace]/jsp/local directory, you might like to merge the changes in the new 1.2.2
versions into your locally modified ones. You can use the diff command to compare the 1.2.1 and 1.2.2 versions
to do this. Also see the version history [history.html#jsp-changes-1_2_1-1_2_2] for a list of modified JSPs.

5. You need to add a new parameter to your [dspace]/dspace.cfg for configurable fulltext indexing

Fulltext Indexing settings
Maximum number of terms indexed for a single field in Lucene.
Default is 10,000 words - often not enough for full-text indexing.
If you change this, you'll need to re-index for the change
to take effect on previously added items.
-1 = unlimited (Integer.MAX_VALUE)
search.maxfieldlength = 10000

http://sourceforge.net/projects/dspace/
http://sourceforge.net/projects/dspace/
http://sourceforge.net/projects/dspace/
history.html#jsp-changes-1_2_1-1_2_2
history.html#jsp-changes-1_2_1-1_2_2

DSpace System Documentation:
Updating a DSpace Installation

47

6. In [dspace-1.2.2-source] run:

ant -Dconfig= [dspace]/config/dspace.cfg update

7. Copy the .war Web application files in [dspace-1.2.2-source]/build to the webapps sub-directory
of your servlet container (e.g. Tomcat). e.g.:

cp [dspace-1.2.2-source]/build/*.war
 [tomcat]/webapps

If you're using Tomcat, you need to delete the directories corresponding to the old .war files. For example,
if dspace.war is installed in [tomcat]/webapps/dspace.war, you should delete the [tomcat]/
webapps/dspace directory. Otherwise, Tomcat will continue to use the old code in that directory.

8. To finialise the install of the new configurable submission forms you need to copy the file [dspace-1.2.2-
source]/config/input-forms.xml into [dspace]/config.

9. Restart Tomcat.

4.8. Updating From 1.2 to 1.2.1
The changes in 1.2.1 are only code changes so the update should be fairly simple.

In the notes below [dspace] refers to the install directory for your existing DSpace installation, and
[dspace-1.2.1-source] to the source directory for DSpace 1.2.1. Whenever you see these path references, be
sure to replace them with the actual path names on your local system.

1. Get the new DSpace 1.2.1 source code from the DSpace page on SourceForge [http://sourceforge.net/projects/
dspace/] and unpack it somewhere. Do not unpack it on top of your existing installation!!

2. Copy the PostgreSQL driver JAR to the source tree. For example:

cd [dspace]/lib
cp postgresql.jar [dspace-1.2.1-source]/lib

3. Take down Tomcat (or whichever servlet container you're using).

4. Your 'localized' JSPs (those in jsp/local) now need to be maintained in the source directory. If you have locally
modified JSPs in your [dspace]/jsp/local directory, you might like to merge the changes in the new 1.2.1
versions into your locally modified ones. You can use the diff command to compare the 1.2 and 1.2.1 versions
to do this. Also see the version history [history.html#jsp-changes-1_2-1_2_1] for a list of modified JSPs.

5. You need to add a few new parameters to your [dspace]/dspace.cfg for browse/search and item thumbnails
display, and for configurable DC metadata fields to be indexed.

whether to display thumbnails on browse and search results pages
 (1.2+)
webui.browse.thumbnail.show = false

max dimensions of the browse/search thumbs. Must be <=

http://sourceforge.net/projects/dspace/
http://sourceforge.net/projects/dspace/
http://sourceforge.net/projects/dspace/
history.html#jsp-changes-1_2-1_2_1
history.html#jsp-changes-1_2-1_2_1

DSpace System Documentation:
Updating a DSpace Installation

48

 thumbnail.maxwidth
and thumbnail.maxheight. Only need to be set if required to be
 smaller than
dimension of thumbnails generated by mediafilter (1.2+)
#webui.browse.thumbnail.maxheight = 80
#webui.browse.thumbnail.maxwidth = 80

whether to display the thumb against each bitstream (1.2+)
webui.item.thumbnail.show = true

where should clicking on a thumbnail from browse/search take the
 user
Only values currently supported are "item" and
 "bitstream"
#webui.browse.thumbnail.linkbehaviour = item

 ##### Fields to Index for Search #####

DC metadata elements.qualifiers to be indexed for search
format: - search.index.[number] = [search field]:element.qualifier
- * used as wildcard

changing these will change your search results,
but will NOT automatically change your search displays

search.index.1 = author:contributor.*
search.index.2 = author:creator.*
search.index.3 = title:title.*
search.index.4 = keyword:subject.*
search.index.5 = abstract:description.abstract
search.index.6 = author:description.statementofresponsibility
search.index.7 = series:relation.ispartofseries
search.index.8 = abstract:description.tableofcontents
search.index.9 = mime:format.mimetype
search.index.10 = sponsor:description.sponsorship
search.index.11 = id:identifier.*

6. In [dspace-1.2.1-source] run:

ant -Dconfig= [dspace]/config/dspace.cfg update

7. Copy the .war Web application files in [dspace-1.2.1-source]/build to the webapps sub-directory
of your servlet container (e.g. Tomcat). e.g.:

cp [dspace-1.2.1-source]/build/*.war
 [tomcat]/webapps

If you're using Tomcat, you need to delete the directories corresponding to the old .war files. For example,
if dspace.war is installed in [tomcat]/webapps/dspace.war, you should delete the [tomcat]/
webapps/dspace directory. Otherwise, Tomcat will continue to use the old code in that directory.

8. Restart Tomcat.

DSpace System Documentation:
Updating a DSpace Installation

49

4.9. Updating From 1.1 (or 1.1.1) to 1.2
The process for upgrading to 1.2 from either 1.1 or 1.1.1 is the same. If you are running DSpace 1.0 or 1.0.1, you need
to follow the instructions for upgrading from 1.0.1 to 1.1 to before following these instructions.

Note also that if you've substantially modified DSpace, these instructions apply to an unmodified 1.1.1 DSpace
instance, and you'll need to adapt the process to any modifications you've made.

This document refers to the install directory for your existing DSpace installation as [dspace], and to the source
directory for DSpace 1.2 as [dspace-1.2-source]. Whenever you see these path references below, be sure to
replace them with the actual path names on your local system.

1. Step one is, of course, to back up all your data before proceeding!! Include all of the contents of [dspace] and
the PostgreSQL database in your backup.

2. Get the new DSpace 1.2 source code from the DSpace page on SourceForge [http://sourceforge.net/projects/dspace/
] and unpack it somewhere. Do not unpack it on top of your existing installation!!

3. Copy the required Java libraries [install.html#javalibs] that we couldn't include in the bundle to the source tree.
For example:

cd [dspace]/lib
cp activation.jar servlet.jar mail.jar
 [dspace-1.2-source]/lib

4. Stop Tomcat (or other servlet container.)

5. It's a good idea to upgrade all of the various third-party tools that DSpace uses to their latest versions:

• Java (note that now version 1.4.0 or later is required)

• Tomcat (Any version after 4.0 will work; symbolic links are no longer an issue)

• PostgreSQL (don't forget to build/download an updated JDBC driver .jar file! Also, back up the database first.)

• Ant

6. You need to add the following new parameters to your [dspace]/dspace.cfg:

Media Filter settings
maximum width and height of generated thumbnails
thumbnail.maxwidth 80
thumbnail.maxheight 80

There are one or two other, optional extra parameters (for controlling the pool of database connections). See the
version history [history.html] for details. If you leave them out, defaults will be used.

Also, to avoid future confusion, you might like to remove the following property, which is no longer required:

config.template.oai-web.xml =
 [dspace]/oai/WEB-INF/web.xml

http://sourceforge.net/projects/dspace/
http://sourceforge.net/projects/dspace/
install.html#javalibs
install.html#javalibs
history.html
history.html
history.html

DSpace System Documentation:
Updating a DSpace Installation

50

7. The layout of the installation directory (i.e. the structure of the contents of [dspace]) has changed somewhat
since 1.1.1. First up, your 'localized' JSPs (those in jsp/local) now need to be maintained in the source directory.
So make a copy of them now!

Once you've done that, you can remove [dspace]/jsp and [dspace]/oai, these are no longer used. (.war
Web application archive files are used instead).

Also, if you're using the same version of Tomcat as before, you need to remove the lines from Tomcat's conf/
server.xml file that enable symbolic links for DSpace. These are the <Context> elements you added to get
DSpace 1.1.1 working, looking something like this:

<Context path="/dspace" docBase="dspace" debug="0" reloadable="true"
 crossContext="true">
 <Resources className="org.apache.naming.resources.FileDirContext"
 allowLinking="true" />
</Context>

Be sure to remove the <Context> elements for both the Web UI and the OAI Web applications.

8. Build and install the updated DSpace 1.2 code. Go to the DSpace 1.2 source directory, and run:

ant -Dconfig= [dspace]/config/dspace.cfg update

9. Copy the new config files in config to your installation, e.g.:

cp [dspace-1.2-source]/config/news-*
 [dspace-1.2-source]/config/mediafilter.cfg
 [dspace-1.2-source]/config/dc2mods.cfg
 [dspace]/config

10.You'll need to make some changes to the database schema in your PostgreSQL database. [dspace-1.2-
source]/etc/database_schema_11-12.sql contains the SQL commands to achieve this. If you've
modified the schema locally, you may need to check over this and make alterations.

To apply the changes, go to the source directory, and run:

psql -f etc/database_schema_11-12.sql [DSpace database name] -h
 localhost

11.A tool supplied with the DSpace 1.2 codebase will then update the actual data in the relational database. Run it using:

 [dspace]/bin/dsrun
 org.dspace.administer.Upgrade11To12

12.Then rebuild the search indices:

 [dspace]/bin/index-all

13.Delete the existing symlinks from your servlet container's (e.g. Tomcat's) webapp sub-directory.

DSpace System Documentation:
Updating a DSpace Installation

51

Copy the .war Web application files in [dspace-1.2-source]/build to the webapps sub-directory of
your servlet container (e.g. Tomcat). e.g.:

cp [dspace-1.2-source]/build/*.war
 [tomcat]/webapps

14.Restart Tomcat.

15.To get image thumbnails generated and full-text extracted for indexing automatically, you need to set up a 'cron'
job, for example one like this:

Run the media filter at 02:00 every day
0 2 * * * [dspace]/bin/filter-media

You might also wish to run it now to generate thumbnails and index full text for the content already in your system.

16.Note 1: This update process has effectively 'touched' all of your items. Although the dates in the Dublin Core
metadata won't have changed (accession date and so forth), the 'last modified' date in the database for each will
have been changed.

This means the e-mail subscription tool may be confused, thinking that all items in the archive have been deposited
that day, and could thus send a rather long email to lots of subscribers. So, it is recommended that you turn off
the e-mail subscription feature for the next day, by commenting out the relevant line in DSpace's cron job, and
then re-activating it the next day.

Say you performed the update on 08-June-2004 (UTC), and your e-mail subscription cron job runs at 4am (UTC).
When the subscription tool runs at 4am on 09-June-2004, it will find that everything in the system has a modification
date in 08-June-2004, and accordingly send out huge emails. So, immediately after the update, you would edit
DSpace's 'crontab' and comment out the /dspace/bin/subs-daily line. Then, after 4am on 09-June-2004
you'd 'un-comment' it out, so that things proceed normally.

Of course this means, any real new deposits on 08-June-2004 won't get e-mailed, however if you're updating the
system it's likely to be down for some time so this shouldn't be a big problem.

17.Note 2: After consulation with the OAI community, various OAI-PMH changes have occurred:

• The OAI-PMH identifiers have changed (they're now of the form oai:hostname:handle as opposed to
just Handles)

• The set structure has changed, due to the new sub-communities feature.

• The default base URL has changed

• As noted in note 1, every item has been 'touched' and will need re-harvesting.

The above means that, if already registered and harvested, you will need to re-register your repository, effectively
as a 'new' OAI-PMH data provider. You should also consider posting an announcement to the OAI implementers
e-mail list [http://www.openarchives.org/mailman/listinfo/OAI-implementers] so that harvesters know to update
their systems.

Also note that your site may, over the next few days, take quite a big hit from OAI-PMH harvesters. The resumption
token support should alleviate this a little, but you might want to temporarily whack up the database connection
pool parameters in [dspace]/config/dspace.cfg. See the dspace.cfg distributed with the source code
to see what these parameters are and how to use them. (You need to stop and restart Tomcat after changing them.)

http://www.openarchives.org/mailman/listinfo/OAI-implementers
http://www.openarchives.org/mailman/listinfo/OAI-implementers
http://www.openarchives.org/mailman/listinfo/OAI-implementers

DSpace System Documentation:
Updating a DSpace Installation

52

I realize this is not ideal; for discussion as to the reasons behind this please see relevant posts to the
OAI community: post one [http://openarchives.org/pipermail/oai-implementers/2004-June/001214.html], post two
[http://openarchives.org/pipermail/oai-implementers/2004-June/001224.html], as well as this post to the dspace-
tech mailing list [#].

If you really can't live with updating the base URL like this, you can fairly easily have thing proceed more-or-less
as they are, by doing the following:

• Change the value of OAI_ID_PREFIX at the top of the org.dspace.app.oai.DSpaceOAICatalog
class to hdl:

• Change the servlet mapping for the OAIHandler servlet back to / (from /request)

• Rebuild and deploy oai.war

However, note that in this case, all the records will be re-harvested by harvesters anyway, so you still need to brace
for the associated DB activity; also note that the set spec changes may not be picked up by some harvesters. It's
recommended you read the above-linked mailing list posts to understand why the change was made.

Now, you should be finished!

4.10. Updating From 1.1 to 1.1.1
Fortunately the changes in 1.1.1 are only code changes so the update is fairly simple.

In the notes below [dspace] refers to the install directory for your existing DSpace installation, and
[dspace-1.1.1-source] to the source directory for DSpace 1.1.1. Whenever you see these path references, be
sure to replace them with the actual path names on your local system.

1. Take down Tomcat.

2. It would be a good idea to update any of the third-party tools used by DSpace at this point (e.g. PostgreSQL),
following the instructions provided with the relevant tools.

3. In [dspace-1.1.1-source] run:

ant -Dconfig= [dspace]/config/dspace.cfg update

4. If you have locally modified JSPs of the following JSPs in your [dspace]/jsp/local directory, you might like
to merge the changes in the new 1.1.1 versions into your locally modified ones. You can use the diff command
to compare the 1.1 and 1.1.1 versions to do this. The changes are quite minor.

collection-home.jsp
admin/authorize-collection-edit.jsp
admin/authorize-community-edit.jsp
admin/authorize-item-edit.jsp
admin/eperson-edit.jsp

5. Restart Tomcat.

http://openarchives.org/pipermail/oai-implementers/2004-June/001214.html
http://openarchives.org/pipermail/oai-implementers/2004-June/001214.html
http://openarchives.org/pipermail/oai-implementers/2004-June/001224.html
http://openarchives.org/pipermail/oai-implementers/2004-June/001224.html
#
#
#

DSpace System Documentation:
Updating a DSpace Installation

53

4.11. Updating From 1.0.1 to 1.1
To upgrade from DSpace 1.0.1 to 1.1, follow the steps below. Your dspace.cfg does not need to be changed. In
the notes below [dspace] refers to the install directory for your existing DSpace installation, and [dspace-1.1-
source] to the source directory for DSpace 1.1. Whenever you see these path references, be sure to replace them
with the actual path names on your local system.

1. Take down Tomcat (or whichever servlet container you're using).

2. We recommend that you upgrage to the latest version of PostgreSQL (7.3.2). Included are some notes to help you
do this [postgres-upgrade-notes.txt]. Note you will also have to upgrade Ant to version 1.5 if you do this.

3. Make the necessary changes to the DSpace database. These include a couple of minor schema changes, and some
new indices which should improve performance. Also, the names of a couple of database views have been changed
since the old names were so long they were causing problems. First run psql to access your database (e.g. psql
-U dspace -W and then enter the password), and enter these SQL commands:

ALTER TABLE bitstream ADD store_number INTEGER;
UPDATE bitstream SET store_number = 0;

ALTER TABLE item ADD last_modified TIMESTAMP;
CREATE INDEX last_modified_idx ON Item(last_modified);

CREATE INDEX eperson_email_idx ON EPerson(email);
CREATE INDEX item2bundle_item_idx on Item2Bundle(item_id);
REATE INDEX bundle2bitstream_bundle_idx ON
 Bundle2Bitstream(bundle_id);
CREATE INDEX dcvalue_item_idx on DCValue(item_id);
CREATE INDEX collection2item_collection_idx ON
 Collection2Item(collection_id);
CREATE INDEX resourcepolicy_type_id_idx ON ResourcePolicy
 (resource_type_id,resource_id);
CREATE INDEX epersongroup2eperson_group_idx on
 EPersonGroup2EPerson(eperson_group_id);
CREATE INDEX handle_handle_idx ON Handle(handle);
CREATE INDEX sort_author_idx on ItemsByAuthor(sort_author);
CREATE INDEX sort_title_idx on ItemsByTitle(sort_title);
CREATE INDEX date_issued_idx on ItemsByDate(date_issued);

DROP VIEW CollectionItemsByDateAccessioned;

DROP VIEW CommunityItemsByDateAccessioned;
CREATE VIEW CommunityItemsByDateAccession as SELECT
 Community2Item.community_id, ItemsByDateAccessioned.* FROM
 ItemsByDateAccessioned, Community2Item WHERE
 ItemsByDateAccessioned.item_id = Community2Item.item_id;
CREATE VIEW CollectionItemsByDateAccession AS SELECT
 collection2item.collection_id,
 itemsbydateaccessioned.items_by_date_accessioned_id,
 itemsbydateaccessioned.item_id,
 itemsbydateaccessioned.date_accessioned FROM itemsbydateaccessioned,
 collection2item WHERE (itemsbydateaccessioned.item_id =
 collection2item.item_id);

postgres-upgrade-notes.txt
postgres-upgrade-notes.txt
postgres-upgrade-notes.txt

DSpace System Documentation:
Updating a DSpace Installation

54

4. Fix your JSPs for Unicode. If you've modified the site 'skin' (jsp/local/layout/header-default.jsp)
you'll need to add the Unicode header, i.e.:

<meta http-equiv="Content-Type" content="text/html;
 charset=UTF-8">

to the <HEAD> element. If you have any locally-edited JSPs, you need to add this page directive to the top of
all of them:

<%@ page contentType="text/html;charset=UTF-8" %>

(If you haven't modified any JSPs, you don't have to do anything.)

5. Copy the required Java libraries [install.html#javalibs] that we couldn't include in the bundle to the source tree.
For example:

cd [dspace]/lib
cp *.policy activation.jar servlet.jar mail.jar
 [dspace-1.1-source]/lib

6. Compile up the new DSpace code, replacing [dspace]/config/dspace.cfg with the path to your current,
LIVE configuration. (The second line, touch `find .`, is a precaution, which ensures that the new code has
a current datestamp and will overwrite the old code. Note that those are back quotes.)

cd [dspace-1.1-source]
touch `find .`
ant
ant -Dconfig= [dspace]/config/dspace.cfg update

7. Update the database tables using the upgrader tool, which sets up the new >last_modified date in the item table:

Run [dspace]/bin/dsrun
 org.dspace.administer.Upgrade101To11

8. Run the collection default authorisation policy tool:

 [dspace]/bin/dsrun
 org.dspace.authorize.FixDefaultPolicies

9. Fix the OAICat properties file. Edit [dspace]/config/templates/oaicat.properties. Change the
line that says

Identify.deletedRecord=yes

To:

Identify.deletedRecord=persistent

This is needed to fix the OAI-PMH 'Identity' verb response. Then run [dspace]/bin/install-configs.

install.html#javalibs
install.html#javalibs

DSpace System Documentation:
Updating a DSpace Installation

55

10.Re-run the indexing to index abstracts and fill out the renamed database views:

 [dspace]/bin/index-all

11.Restart Tomcat. Tomcat should be run with the following environment variable set, to ensure that Unicode is
handled properly. Also, the default JVM memory heap sizes are rather small. Adjust -Xmx512M (512Mb maximum
heap size) and -Xms64M (64Mb Java thread stack size) to suit your hardware.

JAVA_OPTS="-Xmx512M -Xms64M -Dfile.encoding=UTF-8"

56

Chapter 5. DSpace System
Documentation: Configuration and
Customization
There are a number of ways in which DSpace can be configured and/or customized:

• Altering the configuration files in [dspace]/config

• Creating a new XMLUI (Manakin) theme to change the look-and-feel of the repository

• Creating modified versions of the JSP pages for local changes in the JSPUI interface

• Implementing a custom 'plug-in' class -- for example, an 'authenticator' class, so that user authentication in the Web
UI can be adapted and integrated with any existing mechanisms your organization might use, or a 'media filter' to
generate thumbnails or extract full text from a new file format

• Editing the source code

Of these methods, only the last is likely to cause any headaches; if you update the DSpace source code directly,
particularly core class files in org.dspace.* or org.dspace.storage.*, it may make applying future updates
difficult. Before doing this, it is strongly recommended that you e-mail the DSpace developer community [http://
wiki.dspace.org/DspaceResources] to find out the best way to proceed, and the best way to implement your change in
a way that can be contributed back to DSpace [http://wiki.dspace.org/HowToContribute] for everyone's benefit.

5.1. General Configuration
These are general configuration options that apply to the core of DSpace regardless of which interface you are using
(JSPUI or XMLUI).

5.1.1. The dspace.cfg Configuration Properties File
The primary way of configuring DSpace is to edit the dspace.cfg. You'll definitely have to do this before you can
operate DSpace properly. dspace.cfg contains basic information about a DSpace installation, including system
path information, network host information, and other things like site name.

The default dspace.cfg is a good source of information, and contains comments for all properties. It's a basic Java
properties file, where lines are either comments, starting with a '#', blank lines, or property/value pairs of the form:

property.name = property value

The property value may contain references to other configuration properties, in the form ${property.name}. This
follows the ant convention of allowing references in property files. A property may not refer to itself. Examples:

property.name = word1 ${other.property.name} more words
property2.name = ${dspace.dir}/rest/of/path

Whenever you edit dspace.cfg in [dspace-source]/dspace/config/, you should then run 'ant init_configs' in the directory
[dspace-source]/dspace/target/dspace-1.5.0-build.dir so that any changes you may have made are reflected in the
configuration files of other applications, for example Apache. You may then need to restart those applications,
depending on what you changed.

http://wiki.dspace.org/DspaceResources
http://wiki.dspace.org/DspaceResources
http://wiki.dspace.org/DspaceResources
http://wiki.dspace.org/HowToContribute
http://wiki.dspace.org/HowToContribute

DSpace System Documentation:
Configuration and Customization

57

Table 5.1. dspace.cfg Main Properties (Not Complete)

Property Example Values Notes

dspace.dir /dspace Root directory of DSpace installation.
Omit the trailing '/'. Note that if
you change this, there are several
other parameters you will probably
want to change to match, e.g.
assetstore.dir.

dspace.url http://dspace.myu.edu

http://
dspacetest.myu.edu:8080

Main URL at which DSpace Web UI
webapp is deployed. Include any port
number, but do not include a trailing '/'

dspace.hostname dspace.myu.edu Fully qualified hostname; do not
include port number

dspace.name DSpace at My University Short and sweet site name, used
throughout Web UI, e-mails and
elsewhere (such as OAI protocol)

config.template.foo /opt/othertool/cfg/foo When install-configs is run,
the file [dspace]/config/
templates/foo file will be filled
out with values from dspace.cfg
and copied to the value of this
property, in this example /opt/
othertool/cfg/foo. See here
for more information.

plugin.sequence.org.dspace .authenticate.AuthenticationMethodorg.dspace.eperson .X509Authentication,
org.dspace.authenticate .PasswordAuthentication

Comma-separated list of classes
implementing the
org.dspace.authenticate.AuthenticationMethod
interface, which make up the
authentication stack. Authentication
methods are called on in the order
listed.

authentication.x509.keystore.path/tomcat/conf/keystore Path to Java keystore containing
Client CA's certificiate for client
X.509 certificates (Optional; only
needed if X.509 user authentication is
used.)

authentication.x509.keystore.passwordchangeit Password to Java keystore configured
above in
authentication.x509.keystore.path

handle.prefix 1721.1234 The Handle prefix for your site, see the
Handle section [install.html#handles]

assetstore.dir /bigdisk/store The location in the file system for asset
(bitstream) store number zero. This
should be a directory for the sole use
of DSpace.

assetstore.dir.n /anotherdisk/store1 The location in the file system of asset
(bitstream) store number n. When
adding additional stores, start with

install.html#handles
install.html#handles
install.html#handles

DSpace System Documentation:
Configuration and Customization

58

1 (assetstore.dir.1 and count
upwards. Always leave asset store
zero (assetstore.dir). For more
details, see the Bitstream Storage
section [storage.html#bitstreams].

assetstore.incoming 1 The asset store number to use
for storing new bitstreams. For
example, if assetstore.dir.1
is /anotherdisk/store1, and
assetstore.incoming is 1,
new bitstreams will be stored
under /anotherdisk/store1. A
value of 0 (zero) corresponds
to assetstore.dir. For more
details, see the Bitstream Storage
section [storage.html#bitstreams].

srb.xxx

srb.xxx.n

/zone/home/user.domain The sets of SRB access parameters
(see dspace.cfg) if one or more SRB
accounts are used. The srb.xxx set
would correspond to asset (bitstream)
store number zero. The srb.xxx.n set
would correspond to asset (bitstream)
store number n. For more details,
see the Bitstream Storage section
[storage.html#bitstreams].

webui.submit.enable-cc true Enable the Creative Commons
license step in the submission
process for the JSPUI interface.
Submitters are given an opportunity
to select a Creative Commons license
to accompany the Item. Creative
Commons licenses govern the use of
the content. For more details, see the
Creative Commons website [http://
creativecommons.org].

default.locale en The default Locale your Installation is
working with.

webui.browse.thumbnail.maxheight80 Determines the maximum height of
any system generated thumbnails.

webui.browse.thumbnail.maxwidth80 Determines the maximum width of
any system generated thumbnails.

webui.feed.enable true Set the value of this property to true to
enable RSS feeds. If false, feeds will
not be generated, and the feed links
will not appear.

webui.feed.cache.size 100 If caching is desired, set the value
of this property to a positive number,
which represents the total number of
feeds kept in the cache at one time,
for all communities and collections. A

storage.html#bitstreams
storage.html#bitstreams
storage.html#bitstreams
storage.html#bitstreams
storage.html#bitstreams
storage.html#bitstreams
storage.html#bitstreams
storage.html#bitstreams
http://creativecommons.org
http://creativecommons.org
http://creativecommons.org
http://creativecommons.org

DSpace System Documentation:
Configuration and Customization

59

value of 0 disables caching, and the
feed is generated on demand for each
request.

webui.cache.age 48 This property specifiers the age in
hours that a cache web feed may
remain valid for. A value of 0 will
force a check with each request.

webui.feed.formats rss_1.0,rss_2.0 The RSS feature supports several
different syndication formats.

webui.feed.localresolve false By default, the RSS feed
will return global handle server-
based URLs to items, collections
and communities (e.g. http://
hdl.handle.net/123456789/1). This
means if you have not registered
your DSpace installation with
the CNRI Handle Server (e.g.
development or testing instance)
the URLs returned by the feed
will return an error if accessed.
Setting webui.feed.localresolve =
true will result in the
RSS feed returning localised
URLs (e.g. http://myserver.myorg/
handle/123456789/1). If
webui.feed.localresolve is set to false
or not present the default global handle
URL form is used.

webui.feed.item.title dc.title Specify which metadata field you
want to be displayed as an item's title
in the RSS feed.

webui.feed.item.date dc.date.issued Specify which metadata field you
want to be displayed as an item's date
in the RSS feed.

webui.feed.item.descriptiondc.title,
dc.creator,dc.description.abstract

Specify which metadata fields should
be displayed in an item's description
field in the RSS feed. You can specify
as many fields as you wish here.

Property values can include other, previously defined values, by enclosing the property name in ${...}. For example,
if your dspace.cfg contains: -

 dspace.dir = /dspace
 dspace.history = ${dspace.dir}/history

Then the value of the dspace.history property is expanded to be /dspace/history. This method is especially
useful for handling commonly used file paths.

DSpace System Documentation:
Configuration and Customization

60

Whenever you edit dspace.cfg, you should then run [dspace]/bin/install-configs so that any changes
you may have made are reflected in the configuration files of other applications, for example Apache. You may then
need to restart those applications, depending on what you changed.

5.1.2. Configuring Lucene Search Indexes
Search Indexes can be configured via the dspace.cfg file. This allows institutions to choose which DSpace metadata
fields are indexed by Lucene.

For example, the following entries appear in a default DSpace installation:

search.index.1 = author:dc.contributor.*
search.index.2 = author:dc.creator.*
search.index.3 = title:dc.title.*
search.index.4 = keyword:dc.subject.*
search.index.5 = abstract:dc.description.abstract
search.index.6 = author:dc.description.statementofresponsibility
search.index.7 = series:dc.relation.ispartofseries
search.index.8 = abstract:dc.description.tableofcontents
search.index.9 = mime:dc.format.mimetype
search.index.10 = sponsor:dc.description.sponsorship
search.index.11 = id:dc.identifier.*

The form of each entry is search.index.<id> = <search <schema>field>:<metadata field>
where:

• <id> is an incremental number to distinguish each search index entry

• <search field> is an identifier for the search field this index will correspond to

• <metadata field> is the DSpace metadata field to be indexed

So in the example above, search.indexes1, 2 and 6 are configured as the author search
field. The author index is created by Lucene indexing all contributor, creator and
description.statementofresponsibility medatata fields.

After changing the configuration, run index-all to recreate the indexes.

NOTE: While the indexes are created, this only affects the search results and has no effect on the search components
of the user interface. To add new search capability (e.g. to add a new search category to the Advanced Search) requires
local customisation to the user interface.

5.1.3. Browse Configuration
The browse indices for DSpace can be extensively configured. This section of the configuration allows you to take
control of the indices you wish to browse on, and how you wish to present the results. This configuration is broken
down into several parts: defining the indices, defining the fields upon which users can sort results, defining truncation
for potentially long fields (e.g. author lists), setting cross-links between different browse contexts (e.g. from an author's
name to a complete list of their items), how many recent submissions to display, and configuration for item mapping
browse.

Defining the Indices

The form is:

DSpace System Documentation:
Configuration and Customization

61

webui.browse.index.<n> = <index name> : \
 <schema
 prefix>.<element>[.<qualifier>|.*] : \
 (date | title | text) : \
 (full | single) \

index name
The name by which the index will be identified. This may be used in later configuration or to locate the message
key for this index.

<schema prefix>.<element>[.<qualifier>|.*]
The metadata field declaration for the field to be indexed. This will be something like dc.date.issued or
dc.contributor.* or dc.title.

(date | title | text)
This refers to the datatype of the field:

• date: the index type will be treated as a date object

• title: the index type will be treated like a title, which will include a link to the item page

• text: the index type will be treated as plain text. If single mode is specified then this will link to the full mode list

(full | single)
This refers to the way that the index will be displayed in the browse listing. "Full" will be the full item list as
specified by webui.itemlist.columns; "single" will be a single list of only the indexed term.

If you are customising this list beyond the default you will need to insert the text you wish to appear in the navigation
and on link and buttons describing the browse index into the Messages.properties file. The system uses
parameters of the form:

browse.type.<index name>

The Index numbers denoted by <n> must start from 1 and increment by 1 continuously thereafter. Deviation from this
rule will cause an error during installation or during configuration update

This is an example configuration, as it appears by default in dspace.cfg.

webui.browse.index.1 = dateissued:dc.date.issued:date:full
webui.browse.index.2 = author:dc.contributor.*:text:single
webui.browse.index.3 = title:dc.title:title:full
webui.browse.index.4 = subject:dc.subject.*:text:single
webui.browse.index.5 = dateaccessioned:dc.date.accessioned:date:full

Defining Sort Options

Sort options will be available when browsing a list of items (i.e. only in "full" mode, not "single" mode). You can
define an arbitrary number of fields to sort on, irrespective of which fields you display using webui.itemlist.columns

The format is:

webui.browse.sort-option.<n> = <option name> : \

DSpace System Documentation:
Configuration and Customization

62

 <schema
 prefix>.<element>[.<qualifier>|.*] : \
 (date | text)

option name
The name by which the sort option will be identified. This may be used in later configuration or to locate the
message key for this index.

<schema prefix>.<element>[.<qualifier>|.*]
The metadata field declaration for the field to be sorted on. This will be something like dc.title or
dc.date.issued.

(date | text)
This refers to the datatype of the field:

• date: the sort type will be treated as a date object

• text: the sort type will be treated as plain text.

This is the example configuration as it appears in the default dspace.cfg:

webui.browse.sort-option.1 = title:dc.title:text
webui.browse.sort-option.2 = date:dc.date.issued:date

Author (Multiple metadata value) Display

(Note: this section actually applies to any field with multiple values, but authors are the defined case)

You can define which field is the author (or editor, or other repeated field) which this configuration will deal with thus:

webui.browse.author-field = dc.contributor.*

Replace dc.contributor.* with another field if appropriate. The field should be listed in the configuration
for webui.itemlist.columns, otherwise you will not see its effect. It must also be defined in
webui.itemlist.columns as being of data type text, otherwise the functionality will be overriden by the
specific data type features.

Now that we know which field is our author or other multiple metadata value field we can provide the option to
truncate the number of values displayed by default. We replace the remaining list of values with "et al" or the language
pack specific alternative. Note that this is just for the default, and users will have the option of changing the number
displayed when they browse the results

webui.browse.author-limit = <n>

Where <n> is an integer number of values to be displayed. Use -1 for unlimited (default).

Links to other browse contexts

We can define which fields link to other browse listings. This is useful, for example, to link an author's name to a
list of just that author's items. The effect this has is to create links to browse views for the item clicked on. If it is a
"single" type, it will link to a view of all the items which share that metadata element in common (i.e. all the papers

DSpace System Documentation:
Configuration and Customization

63

by a single author). If it is a "full" type, it will link to a view of the standard full browse page, starting with the value
of the link clicked on.

The form is:

webui.browse.link.<n> = <index name>:<display column
 metadata>

This should associated the name of one of the browse indices (webui.browse.index.n) with a metadata field
listed in webui.itemlist.columns above. If this condition is not fulfilled, cross-linking will not work. Note
also that cross-linking only works for metadata fields not tagged as title in webui.itemlist.columns.

The following example shows the default in dspace.cfg which links author names to lists of their publications:

webui.browse.link.1 = author:dc.contributor.*

Recent Submissions

This allows us to define which index to base Recent Submission display on, and how many we should show at any
one time. This uses the PluginManager to automatically load the relevant plugin for the Community and Collection
home pages. Values given in examples are the defaults supplied in dspace.cfg

First define the sort name (from webui.browse.sort-option) to use for # displaying recent submissions. For
example:

recent.submissions.sort-option = dateaccessioned

Define how many recent submissions should be displayed at any one time, for example:

recent.submissions.count = 5

Now we need to set up the processors that the PluginManager [business.html#plugin] will load to actually perform
the recent submissions query on the relevant pages.

Tell the community and collection pages that we are using the Recent Submissions code

plugin.sequence.org.dspace.plugin.CommunityHomeProcessor = \
 org.dspace.app.webui.components.RecentCommunitySubmissions

plugin.sequence.org.dspace.plugin.CollectionHomeProcessor = \
 org.dspace.app.webui.components.RecentCollectionSubmissions

This is already configured by default in dspace.cfg so there should be no need for you to worry about it

Item Mapper

Because the item mapper requires a primitive implementation of the browse system to be present, we simply need
to tell that system which of our indices defines the author browse (or equivalent) so that the mapper can list authors'
items for mapping

Define the the index name (from webui.browse.index) to use for displaying items by author

business.html#plugin
business.html#plugin

DSpace System Documentation:
Configuration and Customization

64

itemmap.author.index = author

So if you change the name of your author browse field, you will also need to update this configuration.

5.1.4. Configuring Media Filters
Media or Format Filters are classes used to generate derivative or alternative versions of content or bitstreams within
DSpace. For example, the PDF Media Filter will extract textual content from PDF bitstreams, the JPEG Media Filter
can create thumbnails from image bitstreams.

Media Filters are configured as Named Plugins [business.html#plugin], with each filter also having a separate
configuration setting (in dspace.cfg) indicating which formats it can process. The default configuration is shown
below.

 #### Media Filter / Format Filter plugins (through
 PluginManager) ####

 #Names of the enabled MediaFilter or FormatFilter plugins
 filter.plugins = PDF Text Extractor, HTML Text Extractor, \
 Word Text Extractor,
 JPEG Thumbnail
 # to enable branded preview: remove last line above, and
 uncomment 2 lines below
 # Word Text Extractor,
 JPEG Thumbnail, \
 # Branded Preview JPEG

 #Assign 'human-understandable' names to each filter
 plugin.named.org.dspace.app.mediafilter.FormatFilter = \
 org.dspace.app.mediafilter.PDFFilter = PDF Text
 Extractor, \
 org.dspace.app.mediafilter.HTMLFilter = HTML Text
 Extractor, \
 org.dspace.app.mediafilter.WordFilter = Word Text
 Extractor, \
 org.dspace.app.mediafilter.JPEGFilter = JPEG
 Thumbnail, \
 org.dspace.app.mediafilter.BrandedPreviewJPEGFilter =
 Branded Preview JPEG

 #Configure each filter's input format(s)
 filter.org.dspace.app.mediafilter.PDFFilter.inputFormats =
 Adobe PDF
 filter.org.dspace.app.mediafilter.HTMLFilter.inputFormats =
 HTML, Text
 filter.org.dspace.app.mediafilter.WordFilter.inputFormats =
 Microsoft Word
 filter.org.dspace.app.mediafilter.JPEGFilter.inputFormats =
 GIF, JPEG, image/png

 filter.org.dspace.app.mediafilter.BrandedPreviewJPEGFilter.inputFormat
s = GIF, JPEG, image/png

business.html#plugin
business.html#plugin

DSpace System Documentation:
Configuration and Customization

65

The enabled Media/Format Filters are named in the filter.plugins field above.

Names are assigned to each filter using the
plugin.named.org.dspace.app.mediafilter.FormatFilter field (e.g. by default the PDFFilter
is named "PDF Text Extractor").

Finally the appropriate filter.<class path>.inputFormats defines the vaild input formats which each
filter can be applied to. These format names must match the short description field of the Bitstream Format
Registry [appendix.html#bitstreamformatregistry].

You can also implement more dynamic or configurable Media/Format Filters which extend SelfNamedPlugin
[business.html#selfnamedplugin] . More information is provide below in Creating a new Media/Format Filter

5.1.5. Wording of E-mail Messages
Sometimes DSpace automatically sends e-mail messages to users, for example to inform them of a new workflow task,
or as a subscription e-mail alert. The wording of emails can be changed by editing the relevant file in [dspace]/
config/emails. Each file is commented. Be careful to keep the right number 'placeholders' (e.g.{2}).

Note: You should replace the contact-information "dspace-help@myu.edu or call us at xxx-555-
xxxx" with your own contact details in:

• config/emails/change_password

• config/emails/register

5.2. The Metadata and Bitstream Format
Registries
The [dspace]/config/registries directory contains three XML files. These are used to load the initial
contents of the Metadata Schema Registry, Dublin Core Metadata registry [appendix.html#dublincoreregistry] and
Bitstream Format registry [appendix.html#bitstreamformatregistry]. After the initial loading (performed by ant
fresh_install above), the registries reside in the database; the XML files are not updated.

In order to change the registries, you may adjust the XML files before the first installation of DSpace. On an allready
running instance it is recommended to change bitstream registries via DSpace admin UI, but the metadata registries
can be loaded again at any time from the XML files without difficult. The changes made via admin UI are not reflected
in the XML files.

5.2.1. Metadata Schema Registry
The default metadata schema in DSpace is Dublin Core, so it is distributed with a single entry in the source XML file
for that namespace. If you wish to add more schemas you can do this in one of two ways. Via the DSpace admin UI
you may define new Metadata Schemas, edit existing schemas and move elements between schemas. But you may
also modify the XML file (or provide an additional one), and re-import the data as follows:

 [dspace]/bin/dsrun org.dspace.adminster.SchemaImporter -f [xml
 file]

The XML file should be structured as follows:

appendix.html#bitstreamformatregistry
appendix.html#bitstreamformatregistry
appendix.html#bitstreamformatregistry
business.html#selfnamedplugin
business.html#selfnamedplugin
appendix.html#dublincoreregistry
appendix.html#dublincoreregistry
appendix.html#bitstreamformatregistry
appendix.html#bitstreamformatregistry

DSpace System Documentation:
Configuration and Customization

66

 <metadata-schemas>
 <schema>
 <name>[schema name]</name>

 <namespace>http://myu.edu/some/namespace</namespace>
 </schema>
 </metadata-schemas>

5.2.2. Metadata Format Registries
The default metadata schema is Dublin Core, so DSpace is distributed with a default Dublin Core Metadata Registry.
Currently, the system requires that every item have a Dublin Core record.

There is a set of Dublin Core Elements, which is used by the system and should not be removed or moved to another
schema, see Appendix: Default Dublin Core Metadata registry [appendix.html#dublincoreregistry].

Note: altering a Metadata Registry has no effect on corresponding parts, e.g. item submission interface, item display,
item import and vice versa. Every metadata element used in submission interface or item import must be registered
before using it.

Note also that deleting a metadata element will delete all its corresponding values.

If you wish to add more metadata elements, you can do this in one of two ways. Via the DSpace admin UI you may
define new metadata elements in the different available schemas. But you may also modify the XML file (or provide
an additional one), and re-import the data as follows:

 [dspace]/bin/dsrun org.dspace.adminster.MetadataImporter -f [xml
 file]

The XML file should be structured as follows:

 <dspace-dc-types>
 <dc-type>
 <schema>dc</schema>
 <element>contributor</element>
 <qualifier>advisor</qualifier>
 <scope_note>Use primarily for thesis
 advisor.</scope_note>
 </dc-type>
 </dspace-dc-types>

5.2.3. Bitstream Format Registry
The bitstream formats recognized by the system and levels of support are similarly stored in the bitstream
format registry. This can also be edited at install-time via [dspace]/config/registries/bitstream-
formats.xml or by the administation Web UI. The contents of the bitstream format registry are entirely up to you,
though the system requires that the following two formats are present:

• Unknown

• License

appendix.html#dublincoreregistry
appendix.html#dublincoreregistry

DSpace System Documentation:
Configuration and Customization

67

Deleting a format will cause any existing bitstreams of this format to be reverted to the unknown bitstream format.

5.3. The Default Submission License
For each submitted item, a license must be granted. The license will be stored along with the item in the bundle
LICENSE in order to keep the information under which terms an items has been published.

You may define a license for each collection seperately, when creating/editing a collection. If no collection specific
license is defined, the default license is used.

The default license can be found in [dspace]/config/default.license and can be edited via the dspace-
admin interface.

DSpace comes with a demo license, which you must adopt to your institutional needs and the legal regulations of
your country.

If in doubt, contact the law department of your institution.

5.3.1. Possible Points in a License
Note, that this is no legal advice, just some starting thoughts for creating you own license.

• Non-exclusive or exclusive right to

• • capture and store

• distribute

• • worldwide

• restricted (e.g. institutional wide

• translate

• transform to other formats or mediums

• without changing the content

• Make sure no rights (copyright or any other) are violated by this publication

• In case the type of submission (e.g. thesis) needs approval, make sure it is the final and approved version.

• Distinguish between the document itself and the metadata

• Point out that the license granted and the information who granted it will be stored.

5.4. Submission Configuration
Instructions for customizing and configuring the Item Submission user interface for either the JSP-UI or XML-UI are
contained in the separate Customizing and Configuring Submission User Interface [submission.html] page.

5.5. XMLUI Interface Customizations (Manakin)
The DSpace digital repository supports two user interfaces one based upon JSP technologies and the other based upon
the Apache Cocoon framework. This section describes those parameters which are specific to the XMLUI interface
based upon the Cocoon framework.

submission.html
submission.html

DSpace System Documentation:
Configuration and Customization

68

5.5.1. XMLUI Configuration Properties
There are several options effecting how the XMLUI user interface for DSpace operates. Listed below are the major
elements and their description, refere to the dspace.cfg file itself for the exhaustive list of configuration parameters.

Property Example Values Notes

xmlui.supportedLocales en, de A list of supported locales for
Manakin. Manakin will look at
a user's browser configuration
for the first language that
appears in this list to make
available to in the interface. This
parameter is a comma seperated
list of Locales. All types of
Locales country, country_language,
country_language_variant Note
that that if the approprate
files are not present
(i.e. Messages_XX_XX.xml) then
Manakin will fall back through to a
more general language.

xmlui.user.registration true Determine if new users should be
allowed to register.This parameter
is usefull in congunction with
shibboleth where you want
to disallow registration because
shibboleth will automatically
register the user. Default value is
true.

xmlui.user.editmetadata true Determine if users should be
allowed to edit their own metadata.
This parameter is usefull in
congunction with shibboleth where
you want to disable the user's ability
to edit their metadata because
it came from Shibboleth. Default
value is true.

xmlui.user.assumelogin true Determine if super administrators
(those whom are in the
Administrators group) can login
as another user from the "edit
eperson" page. This is usefull for
debugging problems in a running
dspace instance, especially in the
workflow process so that you can
see exactly what the user is seeing.
The default value is false, i.e. no
one may assume the login of another
user.

xmlui.user.loginredirect /profile Determine where a user is directed
after logging into the system. Leave

DSpace System Documentation:
Configuration and Customization

69

this parameter blank or undefined
to direct users to the repository
homepage, or "/profile" for the
user's profile, or another reasonable
choice is "/submissions" to see if
the user has any tasks awaiting
their attention. The default is the
repository home page.

xmlui.google.analytics.key UA-XXXXXXX-X If you would like to use google
analytics to track general website
statistics then provide your google
analytics key in this parameter. First
sign up for an account at http://
analytics.google.com, then create
an entry for your repositories
website. Analytics will give you a
snipit of javascript code to place on
your site, inside that snip it is your
google analytics key usually found
in the line, "_uacct = 'UA-
XXXXXXX-X'" Take this key (just
the UA-XXXXXX-X part) and place
it here in this parameter.

xmlui.controlpanel.activity.max250 Assign how many page views will
be recorded and displayed in the
control panel's activity viewer. The
activity tab allows an administrator
to debug problems in a running
DSpace by understanding who and
how their dspace is currently being
used. The default value is 250.

xmlui.force.ssl true Force all authenticated connections
to use SSL, only non-authenticated
connections are allowed over plain
http. If set to true, then you need
to ensure that the 'dspace.hostname'
parameter is set to the correctly.
Default value is false.

xmlui.theme.allowoverrides false If set to true, then allow the
user to override which theme is
used to display a particular page.
When submitting a request add
the HTTP parameter "themepath"
which corresponds to a particular
theme, that specified theme will
be used instead of the any other
configured theme. Note that this is
a potential security hole allowing
execution of unintended code on
the server, this option is only
for development and debugging
it should be turned off for any

http://analytics.google.com
http://analytics.google.com

DSpace System Documentation:
Configuration and Customization

70

production repository. The default
value unless otherwise specified is
"false"

xmlui.bundle.upload ORIGINAL, METADATA,
THUMBNAIL, LICENSE,
CC_LICENSE

Determine which bundles
administrators and collection
administrators may upload into
an existing item through the
administrative interface. If the user
does not have the appropriate
privileges (add & write) on the
bundle then that bundle will not be
shown to the user as an option.

xmlui.community-
list.render.full

True On the community-list page should
all the metadata about a community/
collection be available to the theme.
This parameter defaults to true, but
if you are experiencing performance
problems on the community-list
page you should experiment with
turning this option off.

xmlui.community-list.cache 12 hours Normally, Manakin will fully verify
any cache pages before using a
cache copy. This means that when
the community-list page is viewed
the database is queried for each
community/collection to see if their
metadata has been modified. This
can be expensive for repositories
with a large community tree. To
help solve this problem you can set
the cache to be assumed valued for
a specific set of time. The downside
of this is that new or editing
communities/collections may not
show up the website for a period of
time.

xmlui.bitstream.mods true Optionally you may configure
Manakin to take advantage of
metadata stored as a bitstream.
The MODS metadata file must be
inside the "METADATA" bundle
and named either MODS.xml. If
this option is set to true and the
bitstream is present then it is made
available to the theme for display.

xmlui.bitstream.mets true Optionally you may configure
Manakin to take advantage of
metadata stored as a bitstream.
The METS metadata file must be
inside the "METADATA" bundle
and named either METS.xml. If

DSpace System Documentation:
Configuration and Customization

71

this option is set to true and
the bitstream is present then the
stored METS file is merged with the
METS file generated by Manakin
for each item. Thus if the bitstream
contains a dmdSec then there will
be two dmdSec one from the
bitstream and another generated
from the Dublin Core stored inside
the database.

5.5.2. Configuring Themes and Aspects
The Manakin user interface is composed of two distinct components: aspects and themes. Manakin aspects are like
extensions or plugins for Manakin; they are interactive components that modify existing features or provide new
features for the digital repository. Manakin themes stylize the look-and-feel of the repository, community, or collection.

The repository administrator is able to define which aspects and themes are installed for the particular repository by
editing the [dspace]/config/xmlui.xconf configuration file. The xmlui.xconf file consists of two major
sections: Aspects and Themes.

Aspects

The <aspects> section defines the "Aspect Chain", or the linear set of aspects that are installed in the repository. For
each aspect that is installed in the repository, the aspect makes available new features to the interface. For example, if
the "submission" aspect were to be commented out or removed from the xmlui.xconf, then users would not be able
to submit new items into the repository (even the links and language prompting users to submit items are removed).
Each <aspect> element has two attributes, name & path. The name is used to identify the Aspect, while the path
determines the directory where the aspect's code is located. Here is the default aspect configuration:

 <aspects>
 <aspect name="Artifact Browser"
 path="resource://aspects/ArtifactBrowser/" />
 <aspect name="Administration"
 path="resource://aspects/Administrative/" />
 <aspect name="E-Person" path="resource://aspects/EPerson/"
 />
 <aspect name="Submission and Workflow"
 path="resource://aspects/Submission/" />
 </aspects>

A standard distribution of Manakin/DSpace includes four "core" aspects:

• Artifact Browser

The Artifact Browser Aspect is responsible for browsing communities, collections, items and bitstreams, viewing
an individual item and searching the repository.

• E-Person

The E-Person Aspect is responsible for logging in, logging out, registering new users, dealing with forgotten
passwords, editing profiles and changing passwords.

• Submission

DSpace System Documentation:
Configuration and Customization

72

The Submission Aspect is responsible for submitting new items to DSpace, determining the workflow process and
ingesting the new items into the DSpace repository.

• Administrative

The Administrative Aspect is responsible for administrating DSpace, such as creating, modifying and removing all
communities, collections, e-persons, groups, registries and authorizations.

Themes

The <themes> section defines a set of "rules" that determine where themes are installed in the repository. Each rule
is processed in the order that it appears, and the first rule that matches determines the theme that is applied (so order
is important). Each rule consists of a <theme> element with several possible attributes:

• name (always required)

The name attribute is used to document the theme's name.

• path (always required)

The path attribute determines where the theme is located relative to the themes/ directory and must either contain
a trailing slash or point directly to the theme's sitemap.xmap file.

• regex (either regex and/or handle is required)

The regex attribute determines which URLs the theme should apply to.

• handle (either regex and/or handle is required)

The handle attribute determines which community, collection, or item the theme should apply to.

If you use the "handle" attribute, the effect is cascading, meaning if a rule is established for a community then all
collections and items within that community will also have this theme apply to them as well. Here is an example
configuration:

 <themes>
 <theme name="Theme 1" handle="123456789/23"
 path="theme1/"/>
 <theme name="Theme 2" regex="community-list"
 path="theme2/"/>
 <theme name="Reference Theme" regex=".*"
 path="Reference/"/>
 </themes>

In the example above three themes are configured: "Theme 1", "Theme 2", and the "Reference Theme". The first
rule specifies that "Theme 1" will apply to all communities, collections, or items that are contained under the parent
community "123456789/23". The next rule specifies any URL containing the string "community-list" will get "Theme
2". The final rule, using the regular expression ".*", will match anything, so all pages which have not matched one
of the preceding rules will be matched to the Reference Theme.

5.5.3. Multilingual Support
The XMLUI user interface supports multiple languages through the use of internationalization catalogues as defined
by the Cocoon Internationalization Transformer [http://cocoon.apache.org/2.1/userdocs/i18nTransformer.html]. Each

http://cocoon.apache.org/2.1/userdocs/i18nTransformer.html
http://cocoon.apache.org/2.1/userdocs/i18nTransformer.html

DSpace System Documentation:
Configuration and Customization

73

catalogue contains the translation of all user-displayed strings into a particular language or variant. Each catalogue is
a single xml file whose name is based upon the language it is designated for, thus:

messages_language_country_variant.xml

messages_language_country.xml

messages_language.xml

messages.xml

The interface will automatically determine which file to select based upon the user's browser and system
configuration. For example, if the user's browser is set to Australian English then first the system will check if
messages_en_au.xml is available. If this translation is not available it will fall back to messages_en.xml,
and finally if that is not available, messages.xml.

Manakin supplies an English only translation of the interface. In order to add other translations to the system, locate
the [dspace-source]/dspace/modules/xmlui/src/main/webapp/i18n/ directory. By default this
directory will be empty; to add additional translations add alternative versions of the messages.xml file in specific
language and country variants as needed for your installation.

To set a language other than English as the default language for the repository's interface, simply name the translation
catalogue for the new default language "messages.xml"

5.5.4. Creating a New Theme
Manakin themes stylize the look-and-feel of the repository, community, or collection and are distributed as self-
contained packages. A Manakin/DSpace installation may have multiple themes installed and available to be used in
different parts of the repository. The central component of a theme is the sitemap.xmap, which defines what resources
are available to the theme such as XSL stylesheets, CSS stylesheets, images, or multimedia files.

1) Create theme skeleton

Most theme developers do not create a new theme from scratch; instead they start from the standard theme
template, which defines a skeleton structure for a theme. The template is located at: [dspace-source]/dspace-
xmlui/dspace-xmlui-webbapp/src/main/webbapp/themes/template. To start your new theme
simply copy the theme template into your locally defined modules directory, [dspace-source]/dspace/
modules/xmlui/src/main/webbapp/themes/[your theme's directory]/.

2) Modify theme variables

The next step is to modify the theme's parameters so that the theme knows where it is located. Open the [your
theme's directory]/sitemap.xmap and look for <global-variables>

 <global-variables>
 <theme-path>[your theme's
 directory]</theme-path>
 <theme-name>[your theme's name]</theme-name>
 </global-variables>

Update both the theme's path to the directory name you created in step one. The theme's name is used only for
documentation.

3) Add your CSS stylesheets

DSpace System Documentation:
Configuration and Customization

74

The base theme template will produce a repository interface without any style - just plain XHTML with no color or
formatting. To make your theme useful you will need to supply a CSS Stylesheet that creates your desired look-and-
feel. Add your new CSS stylesheets:

[your theme's directory]/lib/style.css (The base style sheet used for all browsers)

[your theme's directory]/lib/style-ie.css (Specific stylesheet used for internet explorer)

4) Install theme and rebuild DSpace

Next rebuild & deploy DSpace as described in the installation portion of the manual [install.html], and ensure the theme
has been installed as described in the previous section "Configuring Themes and Aspects [configure.html#xmlui-
configure]".

5.6. JSPUI Interface Customizations
DSpace digital repository supports two user interfaces one based upon JSP technologies and the other based upon the
Apache Cocoon framework. This section describes those parameters which are specific to the JSPUI interface.

5.6.1. JSPUI Configuration Properties
There are many options effecting how the JSP-based user interface for DSpace operates. Listed below are the major
elements and their description, refer to the dspace.cfg file itself for the exhaustive list of configuration parameters.

Property Example Values Notes

webui.mydspace.showgroupmembershipsfalse Determine if the MyDSpace page
should list all groups a user belongs
too. The default behavior, if omitted,
is false.

webui.strengths.show true Determine if communities and
collections should display item counts
when listed. The default behavior, if
omitted, is true.

webui.licence_bundle true Setting this parameter to true will
result in a hyperlink being rendered on
the item View page that points to the
item's licence.

webui.browse.thumbnail.showtrue Determine if thumbnails should be
displayed on browse-by pages and
item view pages when available. The
default behavior, if omitted, is false.

webui.browse.thumbnail.linkbehaviouritem Direct the target when a thumbnail
is clicked. Currently the values item
and bitstream are allowed. If this
configuration item is not set, or set
incorrectly, the default is item.

webui.suggest.enable true Set the value of this property to
true to expose the link to the
recommendation form. If false, the
link will not display.

install.html
install.html
configure.html#xmlui-configure
configure.html#xmlui-configure
configure.html#xmlui-configure

DSpace System Documentation:
Configuration and Customization

75

webui.suggest.loggedinusers.onlytrue Enables only logged in users to
suggest an item. The default value is
false.

5.6.2. Configuring Controlled Vocabularies
DSpace now supports controlled vocabularies to confine the set of keywords that users can use while describing items.

The need for a limited set of keywords is important since it eliminates the ambiguity of a free description system,
consequently simplifying the task of finding specific items of information.

The controlled vocabulary add-on allows the user to choose from a defined set of keywords organised in an tree
(taxonomy) and then use these keywords to describe items while they are being submitted.

We have also developed a small search engine that displays the classification tree (or taxonomy) allowing the user to
select the branches that best describe the information that he/she seeks.

The taxonomies are described in XML following this (very simple) structure:

<node id="acmccs98" label="ACMCCS98"> <isComposedBy> <node id="A."
label="General Literature"> <isComposedBy> <node id="A.0" label="GENERAL"/>
<node id="A.1" label="INTRODUCTORY AND SURVEY"/> ... </isComposedBy> </node> ...
</isComposedBy> </node>

Your are free to use any application you want to create your controlled vocabularies. A simple text editor should
be enough for small projects. Bigger projects will require more complex tools. You may use Protegé to create your
taxonomies, save them as OWL and then use a XML Stylesheet (XSLT) to transform your documents to the appropriate
format. Future enhancements to this add-on should make it compatible with standard schemas such as OWL or RDF.

In order to make DSpace compatible with WAI 2.0, the add-on is turned off by default (the add-on relies strongly on
Javascript to function). It can be activated by setting the following property in dspace.cfg:

webui.controlledvocabulary.enable = true

New vocabularies should be placed in [dspace]/config/controlled-vocabularies/ and must be
according to the structure described. A validation XML Schema can be downloaded here [controlledvocabulary.xsd].

Vocabularies need to be associated with the correspondant DC metadata fields. Edit the file [dspace]/config/
input-forms.xml and place a "vocabulary" tag under the "field" element that you want to control. Set
value of the "vocabulary" element to the name of the file that contains the vocabulary, leaving out the extension
(the add-on will only load files with extension "*.xml"). For example:

<field> <dc-schema>dc</dc-schema> <dc-element>subject</dc-element> <dc-
qualifier></dc-qualifier> <!-- An input-type of twobox MUST be marked as
repeatable --> <repeatable>true</repeatable> <label>Subject Keywords</label>
<input-type>twobox</input-type> <hint> Enter appropriate subject keywords or
phrases below. </hint> <required></required><vocabulary [closed="false"]>nsi</
vocabulary> </field>

The vocabulary element has an optional boolean attribute closed that can be used to force input only with the javascript
of controlled-vocabulary add-on. The default behaviour (i.e. without this attribute) is as set closed="false". This allow
the user also to enter the value in free way.

The following vocabularies are currently available by default:

• nsi - nsi.xml - The Norwegian Science Index

controlledvocabulary.xsd
controlledvocabulary.xsd

DSpace System Documentation:
Configuration and Customization

76

• srsc - srsc.xml - Swedish Research Subject Categories

5.6.3. Configuring Multilingual Support

Setting the default language for the application

The default language for the application is set via the [dspace-source]/config/dspace.cfg parameter
default.locale.

This is a locale according to i18n and might consist of country, country_language or country_language_variant,

e. g.: default.locale=en. If not default locale is specified the server locale will be used instead.

Supporting more than one language

Changes in dspace.cfg

With the [dspace-source]/config/dspace.cfg parameter webui.supported.locales you may
provide a comma seperated list of supported (including the default locale) locales.

The locales might have the form country, country_language or country_language_variant, e. g.:

webui.supported.locales = en, de or webui.supported.locales = en, en_ca, de.

This will result in:

• a language switch in the default header

• the user will able to choose his preferred language, this will be part of his profile

• wording of emails

• mails to registered users e. g. alerting service will use the preferred language of the user

• mails to unregistered users e. g. suggest an item will use the language of the session

• according to the language selected for the session, using dspace-admin Edit News will edit the news file of the
language according to session

Related files

If you set webui.supported.locales make sure that all the related additional files for each language are available.
LOCALE should correspond to the locale set in webui.supported.locales, e. g.: for webui.supported.locales
= en, de, fr, there should be:

• [dspace-source]/dspace/modules/jspui/src/main/resources/Messages.properties

• [dspace-source]/dspace/modules/jspui/src/main/resources/
Messages_en.properties

• [dspace-source]/dspace/modules/jspui/src/main/resources/
Messages_de.properties

• [dspace-source]/dspace/modules/jspui/src/main/resources/
Messages_fr.properties

Files to be localized:

DSpace System Documentation:
Configuration and Customization

77

• [dspace-source]/dspace/modules/jspui/src/main/resources/
Messages_LOCALE.properties

• [dspace-source]/dspace/config/input-forms_LOCALE.xml

• [dspace-source]/dspace/config/default_LOCALE.license should be pure ascii

• [dspace-source]/dspace/config/news-top_LOCALE.html

• [dspace-source]/dspace/config/news-side_LOCALE.html

• [dspace-source]/dspace/config/emails/change_password_LOCALE

• [dspace-source]/dspace/config/emails/feedback_LOCALE

• [dspace-source]/dspace/config/emails/internal_error_LOCALE

• [dspace-source]/dspace/config/emails/register_LOCALE

• [dspace-source]/dspace/config/emails/submit_archive_LOCALE

• [dspace-source]/dspace/config/emails/submit_reject_LOCALE

• [dspace-source]/dspace/config/emails/submit_task_LOCALE

• [dspace-source]/dspace/config/emails/subscription_LOCALE

• [dspace-source]/dspace/config/emails/suggest_LOCALE

• [dspace]/webapps/jspui/help/collection-admin_LOCALE.html in html keep the jump link as
original; must be copied to [dspace-source]/dspace/modules/jspui/src/main/webapp/help

• [dspace]/webapps/jspui/help/index_LOCALE.html must be copied to [dspace-source]/dspace/
modules/jspui/src/main/webapp/help

• [dspace]/webapps/jspui/help/site-admin_LOCALE.html must be copied to [dspace-source]/
dspace/modules/jspui/src/main/webapp/help

5.6.4. Customizing the JSP pages
The JSPUI interface is implemented using Java Servlets which handle the business logic, and JavaServer Pages (JSPs)
which produce the HTML pages sent to an end-user. Since the JSPs are much closer to HTML than Java code, altering
the look and feel of DSpace is relatively easy.

To make it even easier, DSpace allows you to 'override' the JSPs included in the source distribution with modified
versions, that are stored in a separate place, so when it comes to updating your site with a new DSpace release, your
modified versions will not be overwritten. It should be possible to dramatically change the look of DSpace to suit your
organization by just changing the CSS style file and the site 'skin' or 'layout' JSPs in jsp/layout; if possible, it is
recommended you limit local customizations to these files to make future upgrades easier.

You can also easily edit the text that appears on each JSP page by editing the dictionary file. However, note that unless
you change the entry in all of the different language message files, users of other languages will still see the default
text for their language. See internationalization [application.html#i18n].

Note that the data (attributes) passed from an underlying Servlet to the JSP may change between versions, so you may
have to modify your customized JSP to deal with the new data.

application.html#i18n
application.html#i18n

DSpace System Documentation:
Configuration and Customization

78

Thus, if possible, it is recommended you limit your changes to the 'layout' JSPs and the stylesheet.

The JSPs are available in one of two places:

• [dspace-source]/dspace-jspui/dspace-jspui-webapp/src/main/webapp/ - Only exists if
you downloaded the full Source Release of DSpace

• [dspace-source]/dspace/target/dspace-[version].dir/webapps/dspace-jspui-
webapp/ - The location where they are copied after first building DSpace.

If you wish to modify a particular JSP, place your edited version in the [dspace-source]/dspace/modules/
jspui/src/main/webapp/ directory (this is the replacement for the pre-1.5 /jsp/local directory), with the
same path as the original. If they exist, these will be used in preference to the default JSPs. For example:

DSpace default Locally-modified version

[jsp.dir]/community-list.jsp [jsp.custom-dir]/dspace/modules/jspui/
src/main/webapp/community-list.jsp

[jsp.dir]/mydspace/main.jsp [jsp.custom-dir]/dspace/modules/jspui/
src/main/webapp/mydspace/main.jsp

Heavy use is made of a style sheet, styles.css.jsp. If you make edits, copy the local version to [jsp.custom-
dir]/dspace/modules/jspui/src/main/webapp/styles.css.jsp, and it will be used automatically
in preference to the default, as described above.

Fonts and colors can be easily changed using the stylesheet. The stylesheet is a JSP so that the user's browser version
can be detected and the stylesheet tweaked accordingly.

The 'layout' of each page, that is, the top and bottom banners and the navigation bar, are determined by the JSPs
/layout/header-*.jsp and /layout/footer-*.jsp. You can provide modified versions of these (in
[jsp.custom-dir]/dspace/modules/jspui/src/main/webapp/layout), or define more styles and
apply them to pages by using the "style" attribute of the dspace:layout tag.

After you've customized your JSPs, you must rebuild the DSpace Web application. If you haven't already built and
installed it, follow the install [install.html] directions. Otherwise, follow the steps below:

1. Rebuild the DSpace installation package by running the following command from your [dspace-source]/
dspace/ directory:

mvn package

2. Re-install the DSpace WAR(s) to [dspace]/webapps by running the following command from your
[dspace-source]/dspace/target/dspace-[version].dir directory:

ant -Dconfig= [dspace-source]/config/dspace.cfg
 update

3. Depending on your setup with Tomcat, you may also need to do the following:

• Shut down Tomcat, and delete any existing [tomcat]/webapps/dspace directories.

• Copy the new .war file(s) to the Tomcat webapps directory:

• Restart Tomcat.

install.html
install.html

DSpace System Documentation:
Configuration and Customization

79

When you restart the web server you should see your customized JSPs.

5.7. Advanced DSpace Customizations
Some customizations to the DSpace platform require advanced skills or knowlege to complete. The options list here
will require either knowlege in system administration or may involve light programming.

5.7.1. Checksum Checker
There are three aspects of the Checksum Checker's operation that can be configured:

1. the execution mode

2. the logging output

3. the policy for removing old checksum results from the database

Checker Execution Mode

Execution mode can be configured using command line options. Information on the options can be found at any time
by running [dspace]/bin/checker --help. The different modes are described below; see the "Which to use"
section that follows for details on the various pros and cons.

Unless a particular bitstream or handle is specified, the Checksum Checker will always check bitstreams in order of
the least recently checked bitstream. (Note that this means that the most recently ingested bitstreams will be the last
ones checked by the Checksum Checker.)

To check a specific number of bitstreams, use the -c option followed by an integer number of bitstreams to check:

bin/checker -c 10

Limited count mode is particularly useful for checking that the checker is executing properly. The Checksum Checker's
default execution mode is to check a single bitstream, as if the -c 1 option had been given.

To run the Checker for a specific period of time, use the -d option with a time argument:

bin/checker -d 10m
bin/checker -d 2h

Valid options for specifying duration are s for seconds, m for minutes, h for hours, d for days, w for weeks, and y
for years (OK, so we're optimists).

The checker will keep starting new bitstream checks for the specified duration, so actual execution duration will be
slightly longer than the specified duration. Bear this in mind when scheduling checks.

To check one or more particular bitstreams by ID, use the -b option followed by one or more bitstream IDs:

bin/checker -b 1 2 3 4

This mode is useful when analyzing problems reported in the logs and when verifying that a resolution has been
successful.

Use the -a option followed by a handle:

DSpace System Documentation:
Configuration and Customization

80

bin/checker -a 123456/123

This will check all the bitstreams inside an item, collection or community.

There are two looping modes:

bin/checker -l # Loops once through the repository
bin/checker -L # Loops continuously through the repository

The -l option can be used if your repository is relatively small and your backup strategy requires it to be completely
validated at a particular point. The -L option might be useful if you have a large repository, and you don't mind (or
can avoid) the IO load caused by the checker.

The Checksum Checker was designed with the idea that most sys admins will run it from the cron. For small repositories
we recommend using the -l option in the cron. For larger repositories that cannot be completely checked in a couple
of hours, we recommend the -d option in the cron.

Checker Reporting

Checksum Checker uses log4j to report its results. By default it will report to a log called [dspace]/log/
checker.log, and it will report only on bitstreams for which the newly calculated checksum does not match the
stored checksum. To report on all bitstreams checked regardless of outcome, use the -v (verbose) command line
option:

bin/checker -l -v #Loop through the repository once and
 report in detail about every bitstream checked.

To change the location of the log, or to modify the prefix used on each line of output, edit the [dspace]/config/
templates/log4j.properties file and run [dspace]/bin/install_configs.

Checker Results Pruning

The Checksum Checker will store the result of every check in the checksum_history table. By default, successful
checksum matches that are eight weeks old or older will be deleted when the -p command line option is
used (unsuccessful ones will be retained indefinitely). The amount of time for which results are retained in the
checksum_history table can be modified by one of two methods:

1. editing the retention policies in [dspace]/config/dspace.cfg OR

2. passing in a properties file containing retention policies when using the -p option.

Pruning is controlled by a number of properties, each of which describes a checksum result code, and the length
of time for which results with that code should be retained. The format is checker.retention.[RESULT
CODE]=[duration]. For example: -

checker.retention.CHECKSUM_MATCH=8w

indicates that successful checksum matches will be retained for eight weeks. Supported units of time are

s Seconds

m Minutes

DSpace System Documentation:
Configuration and Customization

81

h Hours

d Days

w Weeks

y Years

(Note that these units are also used for describing durations for the -d limited duration mode.)

There is a special property, checker.retention.default, that is used to assign a default retention period.

To execute the pruning you must use the -p command line option (with or without a properties file). Checksum Checker
will prune the history table before beginning new checks. We recommend that you use this option regularly, as the
checksum_history table can grow very large without it.

5.7.2. Custom Authentication
Since many institutions and organizations have exisiting authentication systems, DSpace has been designed to allow
these to be easily integrated into an existing authentication infrastructure. It keeps a series, or "stack", of authentication
methods, so each one can be tried in turn. This makes it easy to add new authentication methods or rearrange the order
without changing any existing code. You can also share authentication code with other sites.

The configuration property
plugin.sequence.org.dspace.authenticate.AuthenticationMethod defines the authentication
stack. It is a comma-separated list of class names. Each of these classes implements a different authentication method,
or way of determining the identity of the user. They are invoked in the order specified until one succeeds.

An authentication method is a class that implements the interface
org.dspace.authenticate.AuthenticationMethod. It authenticates a user by evaluating the
credentials (e.g. username and password) he or she presents and checking that they are valid.

The basic authentication procedure in the DSpace Web UI is this:

1. A request is received from an end-user's browser that, if fulfilled, would lead to an action requiring authorization
taking place.

2. If the end-user is already authenticated:

• If the end-user is allowed to perform the action, the action proceeds

• If the end-user is NOT allowed to perform the action, an authorization error is displayed.

• If the end-user is NOT authenticated, i.e. is accessing DSpace anonymously:

3. The parameters etc. of the request are stored

4. The Web UI's startAuthentication method is invoked.

5. First it tries all the authentication methods which do implicit authentication (i.e. they work with just the information
already in the Web request, such as an X.509 client certificate). If one of these succeeds, it proceeds from Step
2 above.

6. If none of the implicit methods succeed, the UI responds by putting up a "login" page to collect credentials for
one of the explicit authentication methods in the stack. The servlet processing that page then gives the proffered
credentials to each authentication method in turn until one succeeds, at which point it retries the original operation
from Step 2 above.

DSpace System Documentation:
Configuration and Customization

82

Please see the source files AuthenticationManager.java and AuthenticationMethod.java for more
details about this mechanism.

Authentication by Password

The default method org.dspace.authenticate.PasswordAuthentication has the following
properties:

• Use of inbuilt e-mail address/password-based log-in. This is achieved by forwarding a request that is attempting an
action requiring authorization to the password log-in servlet, /password-login. The password log-in servlet
(org.dspace.app.webui.servlet.PasswordServlet contains code that will resume the original
request if authentication is successful, as per step 3. described above.

• Users can register themselves (i.e. add themselves as e-people without needing approval from the administrators),
and can set their own passwords when they do this

• Users are not members of any special (dynamic) e-person groups

• You can restrict the domains from which new users are able to regiser. To enable this feature, uncomment
the following line from dspace.cfg: authentication.password.domain.valid = example.com
Example options might be '@example.com' to restrict registration to users with addresses ending in
@example.com, or '@example.com, .ac.uk' to restrict registration to users with addresses ending in
@example.com or with addresses in the .ac.uk domain.

X.509 Certificate Authentication

The X.509 authentication method uses an X.509 certificate sent by the client to establish his/her identity. It requires
the client to have a personal Web certificate installed on their browser (or other client software) which is issued by a
Certifying Authority (CA) recognized by the web server.

1. See the HTTPS installation instructions [install.html#https] to configure your Web server. If you are using HTTPS
with Tomcat, note that the <Connector> tag must include the attribute clientAuth="true" so the server
requests a personal Web certificate from the client.

2. Add the org.dspace.authenticate.X509Authentication plugin first to the list
of stackable authentication methods in the value of the configuration key
plugin.sequence.org.dspace.authenticate.AuthenticationMethodE.g.:

 plugin.sequence.org.dspace.authenticate.AuthenticationMethod = \
 org.dspace.authenticate.X509Authentication, \
 org.dspace.authenticate.PasswordAuthentication

3. You must also configure DSpace with the same CA certificates as the web server, so it can accept and interpret the
clients' certificates. It can share the same keystore file as the web server, or a separate one, or a CA certificate in a
file by itself. Configure it by one of these methods, either the Java keystore

 authentication.x509.keystore.path = path to Java keystore
 file
 authentication.x509.keystore.password = password to access the
 keystore

...or the separate CA certificate file (in PEM or DER format):

install.html#https
install.html#https

DSpace System Documentation:
Configuration and Customization

83

 authentication.x509.ca.cert = path to certificate file for CA
 whose client certs to accept.

4. Choose whether to enable auto-registration: If you want users who authenticate successfully to be automatically
registered as new E-Persons if they are not already, set the authentication.x509.autoregister
configuration property to true. This lets you automatically accept all users with valid personal certificates. The
default is false.

Example of a Custom Authentication Method

Also included in the source is an implementation of an authentication method used at MIT,
edu.mit.dspace.MITSpecialGroup. This does not actually authenticate a user, it only adds the current user
to a special (dynamic) group called 'MIT Users' (which must be present in the system!). This allows us to create
authorization policies for MIT users without having to manually maintain membership of the MIT users group.

By keeping this code in a separate method, we can customize the authentication process for MIT by simply adding it
to the stack in the DSpace configuration. None of the code has to be touched.

You can create your own custom authentication method and add it to the stack. Use the most similar existing method
as a model, e.g. org.dspace.authenticate.PasswordAuthentication for an "explicit" method (with
credentials entered interactively) or org.dspace.authenticate.X509Authentication for an implicit
method.

Configuring IP Authentication

You can enable IP authentication by adding its method to the stack in the DSpace configuration, e.g.:

plugin.sequence.org.dspace.authenticate.AuthenticationMethod =
 org.dspace.authenticate.IPAuthentication

You are than able to map DSpace groups to IP's in dspace.cfg by setting authentication.ip.GROUPNAME = iprange[,
iprange ...], e.g:

 authentication.ip.MY_UNIVERSITY = 10.1.2.3, \ # Full IP
 13.5, \ # Partial
 IP
 11.3.4.5/24, \ # with
 CIDR
 12.7.8.9/255.255.128.0 # with
 netmask

Note: if the Groupname contains blanks you must escape the, e.g. Department\ of\ Statistics

Configuring LDAP Authentication

You can enable LDAP authentication by adding its method to the stack in the DSpace configuration, e.g.

plugin.sequence.org.dspace.authenticate.AuthenticationMethod =

DSpace System Documentation:
Configuration and Customization

84

 org.dspace.authenticate.LDAPAuthentication

If LDAP is enabled in the dspace.cfg file, then new users will be able to register by entering their username and
password without being sent the registration token. If users do not have a username and password, then they can still
register and login with just their email address the same way they do now.

If you want to give any special privileges to LDAP users, create a stackable authentication method to automatically put
people who have a netid into a special group. You might also want to give certain email addresses special privileges.
Refer to the Custom Authentication Code section above for more information about how to do this.

Here is an explanation of what each of the different configuration parameters are for:

• ldap.enable

This setting will enable or disable LDAP authentication in DSpace. With the setting off, users will be required to
register and login with their email address. With this setting on, users will be able to login and register with their
LDAP user ids and passwords.

• webui.ldap.autoregister

This will turn LDAP autoregistration on or off. With this on, a new EPerson object will be created for any user who
successfully authenticates against the LDAP server when they first login. With this setting off, the user must first
register to get an EPerson object by entering their LDAP username and password and filling out the forms.

• ldap.provider_url = ldap://ldap.myu.edu/o=myu.edu

This is the url to your institution's LDAP server. You may or may not need the /o=myu.edu part at the end. Your
server may also require the ldaps:// protocol.

• ldap.id_field = uid

This is the unique identifier field in the LDAP directory where the username is stored.

• ldap.object_context = ou=people,o=myu.edu

This is the object context used when authenticating the user. It is appended to the ldap.id_field and username. For
example uid=username,ou=people,o=myu.edu. You will need to modify this to match your LDAP configuration.

• ldap.search_context = ou=people

This is the search context used when looking up a user's LDAP object to retrieve their data for autoregistering.
With ldap.autoregister turned on, when a user authenticates without an EPerson object we search the LDAP
directory to get their name and email address so that we can create one for them. So after we have authenticated
against uid=username,ou=people,o=byu.edu we now search in ou=people for filtering on [uid=username]. Often
the ldap.search_context is the same as the ldap.object_context parameter. But again this depends on your LDAP
server configuration.

• ldap.email_field = mail

This is the LDAP object field where the user's email address is stored. "mail" is the default and the most common
for ldap servers. If the mail field is not found the username will be used as the email address when creating the
eperson object.

• ldap.surname_field = sn

This is the LDAP object field where the user's last name is stored. "sn" is the default and is the most common for
LDAP servers. If the field is not found the field will be left blank in the new eperson object.

DSpace System Documentation:
Configuration and Customization

85

• ldap.givenname_field = givenName

This is the LDAP object field where the user's given names are stored. I'm not sure how common the givenName
field is in different LDAP instances. If the field is not found the field will be left blank in the new eperson object.

• ldap.phone_field = telephoneNumber

This is the field where the user's phone number is stored in the LDAP directory. If the field is not found the field
will be left blank in the new eperson object.

5.7.3. Configuring System Statistical Reports
Statistics for the system can be made available at http://www.mydspaceinstance.edu/statistics. To
use the system statistics you will have to initialise them as per the installation documentation, but before you do so
you need to perform the customisations discussed here in order to ensure that the reports are generated correctly.

Configuration File

Configuration for the statistics system are in [dspace]/config/dstat.cfg and the file should guide you to
correctly filling in the details required. For the most part you will not need to change this file. You may wish to edit
start.year and start.month to customize the start date of the statistics.

Generating the statistics

The following scripts must be run (in this order) generate the statistcis:

stat-initial
stat-general
stat-monthly
stat-report-initial
stat-report-general
stat-report-monthly

Scripts eding with -general do the work for building reports spanning the entire history of the archive; scripts
ending -initial are to initialise the reports by doing monthly reports from some start date up to the present; scripts
ending -monthly generate a single monthly report for the current month.

stat-inital and stat-report-inital must be run to generate the first set of statistics. Following that,
stat-monthly, stat-general, stat-report-monthly and stat-report-general should be run
daily to update the statistics reports.

If you want additional customisations, you can find additional information about the scripts by running:

[dspace]/bin/dsrun org.dspace.app.statistics.LogAnalyser -help
[dspace]/bin/dsrun org.dspace.app.statistics.ReportGenerator -help

5.7.4. Activating Additional OAI-PMH Crosswalks
DSpace comes with an unqualified DC Crosswalk used in the default OAI-PMH data provider. There are also other
Crosswalks bundled with the DSpace distribution which can be activated by editing one or more configuration files.
How to do this for each available Crosswalk is described below. The DSpace source includes the following crosswalk
plugins available for use with OAI-PMH:

DSpace System Documentation:
Configuration and Customization

86

• mets - The manifest document from a DSpace METS SIP.

• mods - MODS metadata, produced by the table-driven MODS dissemination crosswalk.

• qdc - Qualfied Dublin Core, produced by the configurable QDC crosswalk. Note that this QDC does not include
all of the DSpace "dublin core" metadata fields, since the XML standard for QDC is defined for a different set of
elements and qualifiers.

OAI-PMH crosswalks based on Crosswalk Plugins are activated as follows:

1. Ensure the crosswalk plugin has a lower-case name (possibly in addition to its upper-case name) in the plugin
configuration.

2. Add a line to the file config/templates/oaicat.properties of the form:

Crosswalks. plugin_name =org.dspace.app.oai.PluginCrosswalk

substituting the plugin's name, e.g. "mets" or "qdc"for plugin_name.

3. Run the bin/install-configs script

4. Restart your servlet container, e.g. Tomcat, for the change to take effect.

DIDL

By activating the DIDL provider, DSpace items are represented as MPEG-21 DIDL objects. These DIDL objects are
XML documents that wrap both the Dublin Core metadata that describes the DSpace item and its actual bitstreams.
A bitstream is provided inline in the DIDL object in a base64 encoded manner, and/or by means of a pointer to the
bitstream. The data provider exposes DIDL objects via the metadataPrefix didl.

The crosswalk does not deal with special characters and purposely skips dissemination of the license.txt file
awaiting a better understanding on how to map DSpace rights information to MPEG21-DIDL.

The DIDL Crosswalk can be activated as follows:

• Uncomment the oai.didl.maxresponse item in dspace.cfg

• Uncomment the DIDL Crosswalk entry from the config/templates/oaicat.properties file

• Run the bin/install-configs script

• Restart Tomcat

• Verify the Crosswalk is activated by accessing a URL such as http://mydspace/oai/request?
verb=ListRecords&metadataPrefix=didl

5.7.5. Configuring Packager Plugins
Package ingester plugins are configured as named or self-named plugins [business.html#plugin]
for the interface org.dspace.content.packager.PackageIngester. Package disseminator
plugins are configured as named or self-named plugins [business.html#plugin] for the interface
org.dspace.content.packager.PackageDisseminator.

You can add names for the existing plugins, and add new plugins, by altering these configuration properties. See the
Plugin Manager [business.html#plugin] architecture for more information about plugins.

business.html#plugin
business.html#plugin
business.html#plugin
business.html#plugin
business.html#plugin
business.html#plugin

DSpace System Documentation:
Configuration and Customization

87

5.7.6. Configuring Crosswalk Plugins
Ingestion crosswalk plugins are configured as named or self-named plugins [business.html#plugin]
for the interface org.dspace.content.crosswalk.IngestionCrosswalk. Dissemination crosswalk
plugins are configured as named or self-named plugins [business.html#plugin] for the interface
org.dspace.content.crosswalk.DisseminationCrosswalk.

You can add names for existing crosswalks, add new plugin classes, and add new configurations for the configurable
crosswalks as noted below.

Configurable MODS dissemination crosswalk

The MODS crosswalk is a self-named plugin. To configure an instance of the MODS crosswalk, add a property
to the DSpace configuration starting with "crosswalk.mods.properties."; the final word of the property
name becomes the plugin's name. For example, a property name crosswalk.mods.properties.MODS defines
a crosswalk plugin named "MODS".

The value of this property is a path to a separate properties file containing the configuration for this crosswalk.
The pathname is relative to the DSpace configuration directory, i.e. the config subdirectory of the DSpace install
directory. So, a line like:

 crosswalk.mods.properties.MODS = crosswalks/mods.properties

defines a crosswalk named MODS whose configuration comes from the file [dspace]/config/crosswalks/
mods.properties.

The MODS crosswalk properties file is a list of properties describing how DSpace metadata elements are to be turned
into elements of the MODS XML output document. The property name is a concatenation of the metadata schema,
element name, and optionally the qualifier. For example, the contributor.author element in the native Dublin
Core schema would be: dc.contributor.author. The value of the property is a line containing two segments
separated by the vertical bar ("|"): The first part is an XML fragment which is copied into the output document.
The second is an XPath expression describing where in that fragment to put the value of the metadata element. For
example, in this property:

dc.contributor.author = <mods:name><mods:role><mods:roleTerm
 type="text">author</mods:roleTerm></mods:role><mods:namePart>%s</mods:
;<mods:namePart>%s</mods:namePart></mods:name> |
 mods:namePart/text()

Some of the examples include the string "%s" in the prototype XML where the text value is to be inserted, but don't
pay any attention to it, it is an artifact that the crosswalk ignores. For example, given an author named Jack Florey,
the crosswalk will insert

 <mods:name> <mods:role> <mods:roleTerm
 type="text">author</mods:roleTerm> </mods:role>
 <mods:namePart>
 Jack Florey
 </mods:namePart>
 </mods:name>

business.html#plugin
business.html#plugin
business.html#plugin
business.html#plugin

DSpace System Documentation:
Configuration and Customization

88

into the output document. Read the example configuration file for more details.

Configurable Qualified Dublin Core (QDC) dissemination crosswalk

The QDC crosswalk is a self-named plugin. To configure an instance of the QDC crosswalk, add a property
to the DSpace configuration starting with "crosswalk.qdc.properties."; the final word of the property
name becomes the plugin's name. For example, a property name crosswalk.qdc.properties.QDC defines a
crosswalk plugin named "QDC".

The value of this property is a path to a separate properties file containing the configuration for this crosswalk.
The pathname is relative to the DSpace configuration directory, i.e. the config subdirectory of the DSpace install
directory. So, a line like:

 crosswalk.qdc.properties.QDC = crosswalks/qdc.properties

defines a crosswalk named QDC whose configuration comes from the file [dspace]/config/crosswalks/
qdc.properties.

You'll also need to configure the namespaces and schema location strings for the XML output generated by this
crosswalk. The namespaces property names are of the format:

crosswalk.qdc.namespace.prefix = uri

where prefix is the namespace prefix and uri is the namespace URI.

For example, this shows how a crosswalk named "QDC" would be configured:

crosswalk.qdc.properties.QDC = crosswalks/QDC.properties
crosswalk.qdc.namespace.QDC.dc = http://purl.org/dc/elements/1.1/
crosswalk.qdc.namespace.QDC.dcterms = http://purl.org/dc/terms/
crosswalk.qdc.schemaLocation.QDC = \
 http://purl.org/dc/terms/
 http://dublincore.org/schemas/xmls/qdc/2003/04/02/qualifieddc.xsd

The QDC crosswalk properties file is a list of properties describing how DSpace metadata elements are to be turned into
elements of the Qualified DC XML output document. The property name is a concatenation of the metadata schema,
element name, and optionally the qualifier. For example, the contributor.author element in the native Dublin
Core schema would be: dc.contributor.author. The value of the property is an XML fragment, the element
whose value will be set to the value of the metadata field in the property key.

For example, in this property:

 dc.coverage.temporal = <dcterms:temporal />

the generated XML in the output document would look like, e.g.:

 <dcterms:temporal>Fall, 2005</dcterms:temporal>

XSLT-based crosswalks

The XSLT crosswalks use XSL stylesheet transformation (XSLT) to transform an XML-based external metadata
format to or from DSpace's internal metadata. XSLT crosswalks are much more powerful and flexible than the

DSpace System Documentation:
Configuration and Customization

89

configurable MODS and QDC crosswalks, but they demand some esoteric knowledge (XSL stylesheets). Given that,
you can create all the crosswalks you need just by adding stylesheets and configuration lines, without touching any
of the Java code.

A submission crosswalk is described by a configuration key starting with 'crosswalk.submission.", like

 crosswalk.submission. PluginName.stylesheet =
 path

The PluginName is, of course, the plugin's name. The path value is the path to the file containing the crosswalk
stylesheet (relative to dspace.dir/config).

Here is an example that configures a crosswalk named "LOM" using a stylesheet in [dspace]/config/
crosswalks/d-lom.xsl:

 crosswalk.submission.stylesheet.LOM = crosswalks/d-lom.xsl

A dissemination crosswalk is described by a configuration key starting with 'crosswalk.dissemination.", like

 crosswalk.dissemination. PluginName.stylesheet =
 path

The PluginName is, of course, the plugin's name. The path value is the path to the file containing the crosswalk
stylesheet (relative to dspace.dir/config).

You can make two different plugin names point to the same crosswalk, by adding two configuration entries with the
same path, e.g.

 crosswalk.submission.MyFormat.stylesheet =
 crosswalks/myformat.xslt
 crosswalk.submission.almost_DC.stylesheet =
 crosswalks/myformat.xslt

The dissemination crosswalk must also be configured with an XML Namespace (including prefix and URI) and an
XML Schema for its output format. This is configured on additional properties in the DSpace Configuration, i.e.:

 crosswalk.dissemination. PluginName.namespace. Prefix =
 namespace-URI
 crosswalk.dissemination. PluginName.schemaLocation =
 schemaLocation value

For example:

 crosswalk.dissemination.qdc.namespace.dc =
 http://purl.org/dc/elements/1.1/
 crosswalk.dissemination.qdc.namespace.dcterms =
 http://purl.org/dc/terms/
 crosswalk.dissemination.qdc.schemaLocation = \
 http://purl.org/dc/elements/1.1/
 http://dublincore.org/schemas/xmls/qdc/2003/04/02/qualifieddc.xsd

DSpace System Documentation:
Configuration and Customization

90

DSpace Intermediate Metadata (DIM) format

XSLT crosswalk plugins translate between the external metadata format and an XML format called DSpace
Intermediate Metadata, which exists only for the purpose of XSLT crosswalks. It is never to be exported from DSpace,
since it is not an acknowledged metadata format, it is simply an expression of the way DSpace stores its metadata
fields internally. All the elements in a DIM document are in the namespace http://www.dspace.org/xmlns/
dspace/dim.

The root element is named dim. It has zero or more children, all field elements. It may have an attribute
dspaceType, which identifies the type of object ("ITEM", "COLLECTION", or "COMMUNITY") this metadata
describes. This attribute is only guaranteed to be set for dissemination crosswalks.

Each field element may have the following attributes:

• mdschema (Required) The metadata schema, e.g. "dc".

• element (Required) Element name, such as "contributor".

• qualifier Qualifier name, such as "author".

• lang Language code describing language of this entry.

The value of field is the value of that metadata field. Fields with the same qualifiers may be repeated. Here is an
example of the DIM format:

 <dim:dim xmlns:dim="http://www.dspace.org/xmlns/dspace/dim"
 dspaceType="ITEM">
 <dim:field mdschema="dc" element="title"
 lang="en_US">
 The Endochronic Properties of Resublimated Thiotimonline
 </dim:field>
 <dim:field mdschema="dc" element="contributor"
 qualifier="author">
 Isaac Asimov
 </dim:field>
 <dim:field mdschema="dc" element="language"
 qualifier="iso">
 eng
 </dim:field>
 <dim:field mdschema="dc" element="subject" qualifier="other"
 lang="en_US">
 time-travel scifi hoax
 </dim:field>
 <dim:field element="publisher">
 Boston University Department of Biochemistry
 </dim:field>
 </dim:dim>

Testing XSLT Crosswalks

The XSLT crosswalks will automatically reload an XSL stylesheet that has been modified, so you can edit and test
stylesheets without restarting DSpace. You can test a dissemination crosswalk by hooking it up to an OAI-PMH
crosswalk and using an OAI request to get the metadata for a known item.

DSpace System Documentation:
Configuration and Customization

91

Testing the submission crosswalk is more difficult, so we have supplied a command-line utility to help. It calls the
crosswalk plugin to translate an XML document you submit, and displays the resulting intermediate XML (DIM).
Invoke it with:

 [dspace]/bin/dsrun
 org.dspace.content.crosswalk.XSLTIngestionCrosswalk [-l] plugin
 input-file

..where plugin is the name of the crosswalk plugin to test (e.g. "LOM"), and input-file is a file containing an XML
document of metadata in the appropriate format.

Add the -l option to to pass the ingestion crosswalk a list of elements instead of a whole document, as if the List
form of the ingest() method had been called. This is needed to test ingesters for formats like DC that get called with
lists of elements instead of a root element.

5.7.7. Creating a new Media/Format Filter

Creating a simple Media Filter

New Media Filters must implement the org.dspace.app.mediafilter.FormatFilter interface. More
information on the methods you need to implement is provided in the FormatFilter.java source file. For
example:

 public class MySimpleMediaFilter implements
 FormatFilter

Alternatively, you could extend the org.dspace.app.mediafilter.MediaFilter class, which just defaults
to performing no pre/post-processing of bitstreams before or after filtering.

 public class MySimpleMediaFilter extends
 MediaFilter

You must give your new filter a "name", by adding it and its name to the
plugin.named.org.dspace.app.mediafilter.FormatFilter field in dspace.cfg. In addition to
naming your filter, make sure to specify its input formats in the filter.<class path>.inputFormats
config item. Note the input formats must match the short description field in the Bitstream Format Registry
[appendix.html#bitstreamformatregistry] (i.e. bitstreamformatregistry table).

 plugin.named.org.dspace.app.mediafilter.FormatFilter = \
 org.dspace.app.mediafilter.MySimpleMediaFilter = My Simple Text
 Filter, \ ...
 filter.org.dspace.app.mediafilter.MySimpleMediaFilter.inputFormats =
 Text

appendix.html#bitstreamformatregistry
appendix.html#bitstreamformatregistry

DSpace System Documentation:
Configuration and Customization

92

WARNING: If you neglect to define the inputFormats for a particular filter, the MediaFilterManager will
never call that filter, since it will never find a bitstream which has a format matching that filter's input format(s).

If you have a complex Media Filter class, which actually performs different filtering for different formats (e.g.
conversion from Word to PDF and conversion from Excel to CSV), you should define this as a Dynamic / Self-Named
Format Filter [selfnamedfilter].

Creating a Dynamic or "Self-Named" Format Filter

If you have a more complex Media/Format Filter, which actually performs multiple filtering or conversions for
different formats (e.g. conversion from Word to PDF and conversion from Excel to CSV), you should have
define a class which implements the FormatFilter interface, while also extending the SelfNamedPlugin
[business.html#selfnamedplugin] class. For example:

 public class MyComplexMediaFilter extends
 SelfNamedPlugin implements FormatFilter

Since SelfNamedPlugins are self-named (as stated), they must provide the various names the plugin uses by
defining a getPluginNames() [business.html#pluginmethods] method. Generally speaking, each "name" the plugin
uses should correspond to a different type of filter it implements (e.g. "Word2PDF" and "Excel2CSV" are two good
names for a complex media filter which performs both Word to PDF and Excel to CSV conversions).

Self-Named Media/Format Filters are also configured differently in dspace.cfg. Below is a general template for
a Self Named Filter (defined by an imaginary MyComplexMediaFilter class, which can perform both Word to
PDF and Excel to CSV conversions):

 #Add to a list of all Self Named filters
 plugin.selfnamed.org.dspace.app.mediafilter.FormatFilter = \
 org.dspace.app.mediafilter.MyComplexMediaFilter #Define input formats
 for each "named" plugin this filter implements
 filter.org.dspace.app.mediafilter.MyComplexMediaFilter.Word2PDF.inputF
ormats = Microsoft Word
 filter.org.dspace.app.mediafilter.MyComplexMediaFilter.Excel2CSV.input
Formats = Microsoft Excel

As shown above, each Self-Named Filter class must be listed in the
plugin.selfnamed.org.dspace.app.mediafilter.FormatFilter item in dspace.cfg. In
addition, each Self-Named Filter must define the input formats for each named plugin defined by that filter. In the
above example the MyComplexMediaFilter class is assumed to have defined two named plugins, Word2PDF
and Excel2CSV. So, these two valid plugin names ("Word2PDF" and "Excel2CSV") must be returned by the
getPluginNames() method of the MyComplexMediaFilter class.

These named plugins take different input formats as defined above (see the corresponding inputFormats
setting). WARNING: If you neglect to define the inputFormats for a particular named plugin, the

selfnamedfilter
selfnamedfilter
selfnamedfilter
business.html#selfnamedplugin
business.html#selfnamedplugin
business.html#pluginmethods
business.html#pluginmethods

DSpace System Documentation:
Configuration and Customization

93

MediaFilterManager will never call that plugin, since it will never find a bitstream which has a format matching
that plugin's input format(s).

For a particular Self-Named Filter, you are also welcome to define additional configuration settings in dspace.cfg.
To continue with our current example, each of our imaginary plugins actually results in a different output format
(Word2PDF creates "Adobe PDF", while Excel2CSV creates "Comma Separated Values"). To allow this complex
Media Filter to be even more configurable (especially across institutions, with potential different "Bitstream Format
Registries"), you may wish to allow for the output format to be customizable for each named plugin. For example:

 #Define output formats for each named plugin
 filter.org.dspace.app.mediafilter.MyComplexMediaFilter.Word2PDF.output
Format = Adobe PDF
 filter.org.dspace.app.mediafilter.MyComplexMediaFilter.Excel2CSV.outpu
tFormat = Comma Separated Values

Any custom configuration fields in dspace.cfg defined by your filter are ignored by the MediaFilterManager,
so it is up to your custom media filter class to read those configurations and apply them as necessary. For example,
you could use the following sample Java code in your MyComplexMediaFilter class to read these custom
outputFormat configurations from dspace.cfg :

 //get "outputFormat" configuration from dspace.cfg
 String outputFormat =
 ConfigurationManager.getProperty(MediaFilterManager.FILTER_PREFIX +
 "." + MyComplexMediaFilter.class.getName() + "." +
 this.getPluginInstanceName() + ".outputFormat");

5.7.8. Configuration Files for Other Applications
To ease the hassle of keeping configuration files for other applications involved in running a DSpace site, for example
Apache, in sync, the DSpace system can automatically update them for you when the main DSpace configuration is
changed. This feature of the DSpace system is entirely optional, but we found it useful.

The way this is done is by placing the configuration files for those applications in [dspace]/config/
templates, and inserting special values in the configuration file that will be filled out with appropriate DSpace
configuration properties. Then, tell DSpace where to put filled-out, 'live' version of the configuration by adding an
appropriate property to dspace.cfg, and run [dspace]/bin/install-configs.

Take the apache13.conf file as an example. This contains plenty of Apache-specific stuff, but where it uses a value
that should be kept in sync across DSpace and associated applications, a 'placeholder' value is written. For example,
the host name:

ServerName @@dspace.hostname@@

The text @@dspace.hostname@@ will be filled out with the value of the dspace.hostname property in
dspace.cfg. Then we decide where we want the 'live' version, that is, the version actually read in by Apache when
it starts up, will go.

DSpace System Documentation:
Configuration and Customization

94

Let's say we want the live version to be located at /opt/apache/conf/dspace-httpd.conf. To do this, we
add the following property to dspace.cfg so DSpace knows where to put it:

config.template.apache13.conf = /opt/apache/conf/dspace-httpd.conf

Now, we run [dspace]/bin/install-configs. This reads in [dspace]/config/templates/
apache13.conf, and places a copy at /opt/apache/conf/dspace-httpd.conf with the placeholders
filled out.

So, in /opt/apache/conf/dspace-httpd.conf, there will be a line like:

ServerName dspace.myu.edu

The advantage of this approach is that if a property like the hostname changes, you can just change it in dspace.cfg
and run install-configs, and all of your tools' configuration files will be updated.

However, take care to make all your edits to the versions in [dspace]/config/templates! It's a wise idea to
put a big reminder at the top of each file, since someone might unwittingly edit a 'live' configuration file which would
later be overwritten.

5.7.9. Browse Index Creation
To create all the various browse indices that you define in the configuration as described in the section Browse
Configuration there are a variety of options available to you. You can see these options at any time by running the
indexer without any arguments, thus:

[dspace]/bin/dsrun org.dspace.browse.IndexBrowse

This will show you the following options are available to you:

-r,--rebuild
should we rebuild all the indices, which removes old index tables and creates new ones. For use with -f. Mutually
exclusive with -d

-s,--start
[-s <int>] start from this index number and work upward (mostly only useful for debugging). For use with -t and -f

-x,--execute
execute all the remove and create SQL against the database. For use with -t and -f

-i,--index
actually do the indexing. Mutually exclusive with -t and -f

-o,--out
[-o <filename>] write the remove and create SQL to the given file. For use with -t and -f

-p,--print
write the remove and create SQL to the stdout. For use with -t and -f

-t,--tables
create the tables only, do not attempt to index. Mutually exclusive with -f and -i

-f,--full
make the tables, and do the indexing. This forces -x. Mutually exclusive with -t and -i

DSpace System Documentation:
Configuration and Customization

95

-v,--verbose
print extra information to the stdout. If used in conjunction with -p, you cannot use the stdout to generate your
database structure

-d,--delete
delete all the indices, but don't create new ones. For use with -f. This is mutually exclusive with -r

-h,--help
show this help documentation. Overrides all other arguments

The following, then, are examples of what you want to achieve and how this is done with the command line options

Do a full browse re-index, tearing down all old tables and reconstructing with the new configuration

[dspace]/bin/dsrun org.dspace.browse.IndexBrowse -f -r

Do a full browse re-index without modifying the table structure (This should be your default approach if indexing,
for example, via a cron job periodically)

[dspace]/bin/dsrun org.dspace.browse.IndexBrowse -i

Destroy and rebuild the database, but do not do the indexing. Output the SQL to do this to the screen and a file, as
well as executing it against the database, while being verbose

[dspace]/bin/dsrun org.dspace.browse.IndexBrowse -r -t -p -v -x -o
 myfile.sql

During installation you will have run the ant target:

ant index

This creates the index tables as per the configuration, and will produce your initial indexed state. From this point on,
you should not use ant to generate your indices, as it is not a very good execution environment. Instead, if you feel the
need, or your local customisations demand regular full indexing you should set up a regular script to execute:

[dspace]/bin/dsrun org.dspace.browse.IndexBrowse -i

96

Chapter 6. DSpace System
Documentation: Storage Layer
Back to architecture overview [architecture.html]

6.1. RDBMS
DSpace uses a relational database to store all information about the organization of content, metadata about the content,
information about e-people and authorization, and the state of currently-running workflows. The DSpace system also
uses the relational database in order to maintain indices that users can browse.

Graphical visualization of the relational database [image/db-schema.gif]

Most of the functionality that DSpace uses can be offered by any standard SQL database that supports transactions.
Presently, the browse indices use some features specific to PostgreSQL [http://www.postgresql.org/] and Oracle [http://
www.oracle.com/database/], so some modification to the code would be needed before DSpace would function fully
with an alternative database back-end.

The org.dspace.storage.rdbms package provides access to an SQL database in a somewhat simpler form than
using JDBC directly. The main class is DatabaseManager, which executes SQL queries and returns TableRow
or TableRowIterator objects. The InitializeDatabase class is used to load SQL into the database via
JDBC, for example to set up the schema.

All calls to the Database Manager require a DSpace Context object [business.html#core]. Example use of the
database manager API is given in the org.dspace.storage.rdbms package Javadoc.

The database schema used by DSpace (for PostgreSQL) is stored in [dspace-source]/dspace/etc/
database_schema.sql in the source distribution. It is stored in the form of SQL that can be fed straight into the
DBMS to construct the database. The schema SQL file also directly creates two e-person groups in the database that
are required for the system to function properly.

Also in [dspace-source]/dspace/etc are various SQL files called database_schema_1x_1y. These
contain the necessary SQL commands to update a live DSpace database from version 1.x to 1.y. Note that this might
not be the only part of an upgrade process: see Updating a DSpace Installation [update.html] for details.

The DSpace database code uses an SQL function getnextid to assign primary keys to newly created rows. This
SQL function must be safe to use if several JVMs are accessing the database at once; for example, the Web UI might be
creating new rows in the database at the same time as the batch item importer. The PostgreSQL-specific implementation
of the method uses SEQUENCES for each table in order to create new IDs. If an alternative database backend were to
be used, the implementation of getnextid could be updated to operate with that specific DBMS.

The etc directory in the source distribution contains two further SQL files. clean-database.sql contains the
SQL necessary to completely clean out the database, so use with caution! The Ant target clean_database can
be used to execute this. update-sequences.sql contains SQL to reset the primary key generation sequences
to appropriate values. You'd need to do this if, for example, you're restoring a backup database dump which creates
rows with specific primary keys already defined. In such a case, the sequences would allocate primary keys that were
already used.

Versions of the *.sql* files for Oracle are stored in [dspace-source]/dspace/etc/oracle. These need
to be copied over their PostgreSQL counterparts in [dspace-source]/dspace/etc prior to installation.

architecture.html
architecture.html
image/db-schema.gif
image/db-schema.gif
http://www.postgresql.org/
http://www.postgresql.org/
http://www.oracle.com/database/
http://www.oracle.com/database/
http://www.oracle.com/database/
business.html#core
business.html#core
update.html
update.html

DSpace System
Documentation: Storage Layer

97

6.1.1. Maintenance and Backup

When using PostgreSQL, it's a good idea to perform regular 'vacuuming' of the database to optimize performance.
This is performed by the vacuumdb command which can be executed via a 'cron' job, for example by putting this
in the system crontab:

clean up the database nightly
40 2 * * * /usr/local/pgsql/bin/vacuumdb --analyze dspace > /dev/null
 2>&1

The DSpace database can be backed up and restored using usual methods, for example with pg_dump and psql.
However when restoring a database, you will need to perform these additional steps:

• The fresh_install target loads up the initial contents of the Dublin Core type and bitstream format registries,
as well as two entries in the epersongroup table for the system anonymous and administrator groups. Before you
restore a raw backup of your database you will need to remove these, since they will already exist in your backup,
possibly having been modified. For example, use:

DELETE FROM dctyperegistry;
DELETE FROM bitstreamformatregistry;
DELETE FROM epersongroup;

• After restoring a backup, you will need to reset the primary key generation sequences so that they do not produce
already-used primary keys. Do this by executing the SQL in [dspace-source]/dspace/etc/update-
sequences.sql, for example with:

psql -U dspace -f
 [dspace-source]/dspace/etc/update-sequences.sql

Future updates of DSpace may involve minor changes to the database schema. Specific instructions on how to update
the schema whilst keeping live data will be included. The current schema also contains a few currently unused database
columns, to be used for extra functionality in future releases. These unused columns have been added in advance to
minimize the effort required to upgrade.

6.1.2. Configuring the RDBMS Component

The database manager is configured with the following properties in dspace.cfg:

db.url The JDBC URL to use for accessing the database. This
should not point to a connection pool, since DSpace
already implements a connection pool.

db.driver JDBC driver class name. Since presently, DSpace
uses PostgreSQL-specific features, this should be
org.postgresql.Driver.

db.username Username to use when accessing the database.

db.password Corresponding password ot use when accessing the
database.

DSpace System
Documentation: Storage Layer

98

6.2. Bitstream Store
DSpace offers two means for storing content. The first is in the file system on the server. The second is using SRB
(Storage Resource Broker) [http://www.sdsc.edu/srb]. Both are achieved using a simple, lightweight API.

SRB is purely an option but may be used in lieu of the server's file system or in addition to the file system. Without going
into a full description, SRB is a very robust, sophisticated storage manager that offers essentially unlimited storage and
straightforward means to replicate (in simple terms, backup) the content on other local or remote storage resources.

The terms "store", "retrieve", "in the system", "storage", and so forth, used below can refer to storage in the file system
on the server ("traditional") or in SRB.

The BitstreamStorageManager provides low-level access to bitstreams stored in the system. In general,
it should not be used directly; instead, use the Bitstream object in the content management API
[business.html#content] since that encapsulated authorization and other metadata to do with a bitstream that are not
maintained by the BitstreamStorageManager.

The bitstream storage manager provides three methods that store, retrieve and delete bitstreams. Bitstreams are referred
to by their 'ID'; that is the primary key bitstream_id column of the corresponding row in the database.

As of DSpace version 1.1, there can be multiple bitstream stores. Each of these bitstream stores can be traditional
storage or SRB storage. This means that the potential storage of a DSpace system is not bound by the maximum size
of a single disk or file system and also that traditional and SRB storage can be combined in one DSpace installation.
Both traditional and SRB storage are specified by configuration parameters [configure.html]. Also see Configuring
the Bitstream Store below.

Stores are numbered, starting with zero, then counting upwards. Each bitstream entry in the database has a store
number, used to retrieve the bitstream when required.

At the moment, the store in which new bitstreams are placed is decided using a configuration parameter, and there is
no provision for moving bitstreams between stores. Administrative tools for manipulating bitstreams and stores will
be provided in future releases. Right now you can move a whole store (e.g. you could move store number 1 from /
localdisk/store to /fs/anotherdisk/store but it would still have to be store number 1 and have the
exact same contents.

Bitstreams also have an 38-digit internal ID, different from the primary key ID of the bitstream table row. This is
not visible or used outside of the bitstream storage manager. It is used to determine the exact location (relative to the
relevant store directory) that the bitstream is stored in traditional or SRB storage. The first three pairs of digits are the
directory path that the bitstream is stored under. The bitstream is stored in a file with the internal ID as the filename.

For example, a bitstream with the internal ID 12345678901234567890123456789012345678 is stored in the
directory:

(assetstore dir)/12/34/56/12345678901234567890123456789012345678

The reasons for storing files this way are:

• Using a randomly-generated 38-digit number means that the 'number space' is less cluttered than simply using the
primary keys, which are allocated sequentially and are thus close together. This means that the bitstreams in the
store are distributed around the directory structure, improving access efficiency.

• The internal ID is used as the filename partly to avoid requiring an extra lookup of the filename of the bitstream, and
partly because bitstreams may be received from a variety of operating systems. The original name of a bitstream
may be an illegal UNIX filename.

http://www.sdsc.edu/srb
http://www.sdsc.edu/srb
http://www.sdsc.edu/srb
business.html#content
business.html#content
configure.html
configure.html

DSpace System
Documentation: Storage Layer

99

When storing a bitstream, the BitstreamStorageManager DOES set the following fields in the corresponding
database table row:

• bitstream_id

• size

• checksum

• checksum_algorithm

• internal_id

• deleted

• store_number

The remaining fields are the responsibility of the Bitstream content management API class.

The bitstream storage manager is fully transaction-safe. In order to implement transaction-safety, the following
algorithm is used to store bitstreams:

1. A database connection is created, separately from the currently active connection in the current DSpace context
[business.html#core].

2. An unique internal identifier (separate from the database primary key) is generated.

3. The bitstream DB table row is created using this new connection, with the deleted column set to true.

4. The new connection is committed, so the 'deleted' bitstream row is written to the database

5. The bitstream itself is stored in a file in the configured 'asset store directory', with a directory path and filename
derived from the internal ID

6. The deleted flag in the bitstream row is set to false. This will occur (or not) as part of the current DSpace
Context.

This means that should anything go wrong before, during or after the bitstream storage, only one of the following
can be true:

• No bitstream table row was created, and no file was stored

• A bitstream table row with deleted=true was created, no file was stored

• A bitstream table row with deleted=true was created, and a file was stored

None of these affect the integrity of the data in the database or bitstream store.

Similarly, when a bitstream is deleted for some reason, its deleted flag is set to true as part of the overall transaction,
and the corresponding file in storage is not deleted.

The above techniques mean that the bitstream storage manager is transaction-safe. Over time, the bitstream
database table and file store may contain a number of 'deleted' bitstreams. The cleanup method of
BitstreamStorageManager goes through these deleted rows, and actually deletes them along with any
corresponding files left in the storage. It only removes 'deleted' bitstreams that are more than one hour old, just in case
cleanup is happening in the middle of a storage operation.

business.html#core
business.html#core

DSpace System
Documentation: Storage Layer

100

This cleanup can be invoked from the command line via the Cleanup class, which can in turn be easily executed
from a shell on the server machine using /dspace/bin/cleanup. You might like to have this run regularly by
cron, though since DSpace is read-lots, write-not-so-much it doesn't need to be run very often.

6.2.1. Backup
The bitstreams (files) in traditional storage may be backed up very easily by simply 'tarring' or 'zipping' the
assetstore directory (or whichever directory is configured in dspace.cfg). Restoring is as simple as extracting
the backed-up compressed file in the appropriate location.

Similar means could be used for SRB, but SRB offers many more options for managing backup.

It is important to note that since the bitstream storage manager holds the bitstreams in storage, and information about
them in the database, that a database backup and a backup of the files in the bitstream store must be made at the same
time; the bitstream data in the database must correspond to the stored files.

Of course, it isn't really ideal to 'freeze' the system while backing up to ensure that the database and files match up.
Since DSpace uses the bitstream data in the database as the authoritative record, it's best to back up the database before
the files. This is because it's better to have a bitstream in storage but not the database (effectively non-existent to
DSpace) than a bitstream record in the database but not storage, since people would be able to find the bitstream but
not actually get the contents.

6.2.2. Configuring the Bitstream Store
Both traditional and SRB bitstream stores are configured in dspace.cfg.

Configuring Traditonal Storage

Bitstream stores in the file system on the server are configured like this:

assetstore.dir = [dspace]/assetstore

(Remember that [dspace] is a placeholder for the actual name of your DSpace install directory).

The above example specifies a single asset store.

assetstore.dir = [dspace]/assetstore_0
assetstore.dir.1 = /mnt/other_filesystem/assetstore_1

The above example specifies two asset stores. assetstore.dir specifies the asset store number 0 (zero); after that use
assetstore.dir.1, assetstore.dir.2 and so on. The particular asset store a bitstream is stored in is held in the database, so
don't move bitstreams between asset stores, and don't renumber them.

By default, newly created bitstreams are put in asset store 0 (i.e. the one specified by the assetstore.dir property.) This
allows backwards compatibility with pre-DSpace 1.1 configurations. To change this, for example when asset store 0
is getting full, add a line to dspace.cfg like:

assetstore.incoming = 1

Then restart DSpace (Tomcat). New bitstreams will be written to the asset store specified by assetstore.dir.1,
which is /mnt/other_filesystem/assetstore_1 in the above example.

DSpace System
Documentation: Storage Layer

101

Configuring SRB Storage

The same framework is used to configure SRB storage. That is, the asset store number (0..n) can reference a file system
directory as above or it can reference a set of SRB account parameters. But any particular asset store number can
reference one or the other but not both. This way traditional and SRB storage can both be used but with different asset
store numbers. The same cautions mentioned above apply to SRB asset stores as well: The particular asset store a
bitstream is stored in is held in the database, so don't move bitstreams between asset stores, and don't renumber them.

For example, let's say asset store number 1 will refer to SRB. The there will be a set of SRB account parameters like this:

srb.host.1 = mysrbmcathost.myu.edu
srb.port.1 = 5544
srb.mcatzone.1 = mysrbzone
srb.mdasdomainname.1 = mysrbdomain
srb.defaultstorageresource.1 = mydefaultsrbresource
srb.username.1 = mysrbuser
srb.password.1 = mysrbpassword
srb.homedirectory.1 = /mysrbzone/home/mysrbuser.mysrbdomain
srb.parentdir.1 = mysrbdspaceassetstore

Several of the terms, such as mcatzone, have meaning only in the SRB context and will be familiar to SRB users. The
last, srb.parentdir.n, can be used to used for addition (SRB) upper directory structure within an SRB account.
This property value could be blank as well.

(If asset store 0 would refer to SRB it would be srb.host = ..., srb.port = ..., and so on (.0 omitted) to be
consistent with the traditional storage configuration above.)

The similar use of assetstore.incoming to reference asset store 0 (default) or 1..n (explicit property) means
that new bitstreams will be written to traditional or SRB storage determined by whether a file system directory on the
server is referenced or a set of SRB account parameters are referenced.

There are comments in dspace.cfg that further elaborate the configuration of traditional and SRB storage.

102

Chapter 7. DSpace System
Documentation: Directories and Files
7.1. Overview
A complete DSpace installation consists of three separate directory trees:

The source directory:
This is where (surprise!) the source code lives. Note that the config files here are used only during the initial install
process. After the install, config files should be changed in the install directory. It is referred to in this document
as [dspace-source].

The install directory:
This directory is populated during the install process and also by DSpace as it runs. It contains config files,
command-line tools (and the libraries necessary to run them), and usually--although not necessarily--the contents
of the DSpace archive (depending on how DSpace is configured). After the initial build and install, changes to
config files should be made in this directory. It is referred to in this document as [dspace].

The web deployment directory:
This directory is generated by the web server the first time it finds a dspace.war file in its webapps directory. It
contains the unpacked contents of dspace.war, i.e. the JSPs and java classes and libraries necessary to run DSpace.
Files in this directory should never be edited directly; if you wish to modify your DSpace installation, you should
edit files in the source directory and then rebuild. The contents of this directory aren't listed here since its creation
is completely automatic. It is usually referred to in this document as [tomcat]/webapps/dspace.

7.2. Source Directory Layout
• [dspace-source]

• dspace/ - Directory which contains all build and configuration information for DSpace

• build.xml - The Build file for Ant -- used to preform a fresh_install, upgrade, or deploy new changes.

• CHANGES - Detailed list of code changes between versions.

• KNOWN_BUGS - Known bugs in the current version.

• LICENSE - DSpace source code license.

• README - Obligatory basic information file.

• bin/ - Some shell and Perl scripts for running DSpace command-line tasks.

• config/ - Configuration files:

• controlled-vocabularies/ - Fixed, limited vocabularies used in metadata entry

• crosswalks/ - Metadata crosswalks - property files or XSL stylesheets

• dspace.cfg - The Main DSpace configuration file (You will need to edit this).

• dc2mods.cfg - Mappings from Dublin Core metadata to MODS [http://www.loc.gov/standards/mods/]
for the METS export.

http://www.loc.gov/standards/mods/
http://www.loc.gov/standards/mods/

DSpace System Documentation:
Directories and Files

103

• default.license - The default license that users must grant when submitting items.

• dstat.cfg , dstat.map - Configuration for statistical reports.

• input-forms.xml - Submission UI metadata field configuration.

• news-side.html - Text of the front-page news in the sidebar, only used in JSPUI.

• news-top.html - Text of the front-page news in the top box, only used in teh JSPUI.

• emails/ - Text and layout templates for emails sent out by the system.

• language-packs/ - Contains "dictionary files" -- Java properties files that contain user interface text
in different languages

• registries/ - Initial contents of the bitstream format registry and Dublin Core element/qualifier
registry. These are only used on initial system setup, after which they are maintained in the database.

• templates/ - Configuration files for libraries and external applications (e.g. Apache, Tomcat) are kept
and edited here. They can refer to properties in the main DSpace configuration - have a look at a couple.
When they're updated, a command line tool fills out these files with appropriate values from dspace.cfg, and
copies them to their appropriate location (hence "templates".)

• docs/ - DSpace system documentation. The technical documentation for functionality, installation,
configuration, etc.

• etc/ - Miscelleanous configuration need to install DSpace that isn't really to do with system configuration -
e.g. the PostgreSQL database schema, and a couple of configuration files that are used during the build process
but not by the live system. Also contains the deployment descriptors (web.xml files) for the Web UI and
OAI-PMH support .war files.

• oracle/ - Versions of the database schema and updater SQL scripts for Oracle.

• modules/ - The Web UI modules "overlay" directory. DSpace uses Maven to automatically look here for
any customizations you wish to make to DSpace Web interfaces.

• jspui - Contains all customizations for the JSP User Interface.

• src/main/resources/ - The overlay for JSPUI Resources. This is the location to place any custom
Messages.properties files.

• src/main/webapp/ - The overlay for JSPUI Web Application. This is the location to place any custom
JSPs to be used by DSpace.

• lni - Contains all customizations for the Lightweight Network Interface.

• oai - Contains all customizations for the OAI-PMH Interface.

• sword - Contains all customizations for the SWORD (Simple Web-service Offering Repository Deposit)
Interface.

• xmlui - Contains all customizations for the XML User Interface (aka Manakin).

• src/main/webapp/ - The overlay for XMLUI Web Application. This is the location to place custom
Themes or Configurations.

DSpace System Documentation:
Directories and Files

104

• i18n/ - The location to place a custom version of the XMLUI's messages.xml

• themes/ - The location to place custom Themes for the XMLUI

• src/ - Maven configurations for DSpace System. This directory contains the Maven and Ant build files for
DSpace.

• target/ - (Only exists after building DSpace) This is the location Maven uses to build your DSpace
installation package.

• dspace-[version].dir - The location of the DSpace Installation Package (which can then be installed
by running ant update)

7.3. Installed Directory Layout
Below is the basic layout of a DSpace installation using the default configuration. These paths can be configured if
necessary.

• [dspace]

• assetstore/ - asset store files

• bin/ - shell and Perl scripts

• config/ - configuration, with sub-directories as above

• handle-server/ - Handles server files

• history/ - stored history files (generally RDF/XML)

• lib/ - JARs, including dspace.jar, containing the DSpace classes

• log/ - Log files

• reports/ - Reports generated by statistical report generator

• search/ - Lucene search index files

• upload/ - temporary directory used during file uploads etc.

• webapps/ - location where DSpace installs all Web Applications

7.4. Contents of JSPUI Web Application
DSpace's Ant build file creates a dspace-jspui-webapp/ directory with the following structure:

• (top level dir)

• The JSPs

• WEB-INF/

• web.xml - DSpace JSPUI Web Application configuration and Servlet mappings

• dspace-tags.tld - DSpace custom tag descriptor

DSpace System Documentation:
Directories and Files

105

• fmt.tld - JSTL message format tag descriptor, for internationalization

• lib/ - All the third-party JARs and pre-compiled DSpace API JARs needed to run JSPUI

• classes/ - Any additional necessary class files

7.5. Contents of XMLUI Web Application (aka
Manakin)
DSpace's Ant build file creates a dspace-xmlui-webapp/ directory with the following structure:

• (top level dir)

• aspects/ - Contains overarching Aspect Generator config and Prototype DRI (Digital Repository Interface)
document for Manakin.

• i18n/ - Internationalization / Multilingual support. Contains the messages.xml English language pack by
default.

• themes/ - Contains all out-of-the-box Manakin themes

• Classic/ - The classic theme, which makes the XMLUI look like classic DSpace

• dri2xhtml/ - The base theme, which converts XMLUI DRI (Digital Repository Interface) format into
XHTML for display

• Reference/ - The default reference theme for XMLUI

• template/ - A theme template...useful as a starting point for your own custom theme(s)

• dri2xhtml.xsl - The DRI-to-XHTML XSL Stylesheet. Uses the above 'dri2xhtml' theme to generate
XHTML

• themes.xmap - The Theme configuration file. It determines which theme(s) are used by XMLUI

• WEB-INF/

• lib/ - All the third-party JARs and pre-compiled DSpace JARs needed to run XMLUI

• classes/ - Any additional necessary class files

• cocoon.xconf - XMLUI's Apache Cocoon configuration

• logkit.xconf - XMLUI's Apache Cocoon Logging configuration

• web.xml - XMLUI Web Application configuration and Servlet mappings

7.6. Log Files
The first source of potential confusion is the log files. Since DSpace uses a number of third-party tools, problems can
occur in a variety of places. Below is a table listing the main log files used in a typical DSpace setup. The locations
given are defaults, and might be different for your system depending on where you installed DSpace and the third-party
tools. The ordering of the list is roughly the recommended order for searching them for the details about a particular
problem or error.

DSpace System Documentation:
Directories and Files

106

Table 7.1. DSpace Log File Locations

Log File What's In It

[dspace]/log/dspace.log Main DSpace log file. This is where the DSpace code
writes a simple log of events and errors that occur
within the DSpace code. You can control the verbosity
of this by editing the [dspace-source]/config/
templates/log4j.properties file and then
running "ant init_configs". [dspace]/bin/install-configs in
[dspace-sorce]/dspace/target/dspace-1.5.0-build/.

[tomcat]/logs/catalina.out This is where Tomcat's standard output is written. Many
errors that occur within the Tomcat code are logged
here. For example, if Tomcat can't find the DSpace code
(dspace.jar), it would be logged in catalina.out.

[tomcat]/logs/hostname_log.yyyy-mm-
dd.txt

If you're running Tomcat stand-alone (without Apache),
it logs some information and errors for specific Web
applications to this log file. hostname will be your host
name (e.g. dspace.myu.edu) and yyyy-mm-dd will
be the date.

[tomcat]/logs/apache_log.yyyy-mm-
dd.txt

If you're using Apache, Tomcat logs information
about Web applications running through Apache
(mod_webapp) in this log file (yyyy-mm-dd being the
date.)

[apache]/error_log Apache logs to this file. If there is a problem with getting
mod_webapp working, this is a good place to look for
clues. Apache also writes to several other log files, though
error_log tends to contain the most useful information
for tracking down problems.

[dspace]/log/handle-plug.log The Handle server runs as a separate process from the
DSpace Web UI (which runs under Tomcat's JVM).
Due to a limitation of log4j's 'rolling file appenders', the
DSpace code running in the Handle server's JVM must
use a separate log file. The DSpace code that is run as
part of a Handle resolution request writes log information
to this file. You can control the verbosity of this by
editing [dspace-source]/config/templates/
log4j-handle-plugin.properties.

[dspace]/log/handle-server.log This is the log file for CNRI's Handle server code. If
a problem occurs within the Handle server code, before
DSpace's plug-in is invoked, this is where it may be
logged.

[dspace]/handle-server/error.log On the other hand, a problem with CNRI's Handle server
code might be logged here.

PostgreSQL log PostgreSQL also writes a log file. This one doesn't seem
to have a default location, you probably had to specify it
yourself at some point during installation. In general, this
log file rarely contains pertinent information--PostgreSQL
is pretty stable, you're more likely to encounter problems
with connecting via JDBC, and these problems will be
logged in dspace.log.

107

Chapter 8. DSpace System
Documentation: Architecture

8.1. Overview
The DSpace system is organized into three layers, each of which consists of a number of components.

DSpace System Architecture

The storage layer is responsible for physical storage of metadata and content. The business logic layer deals with
managing the content of the archive, users of the archive (e-people), authorization, and workflow. The application layer
contains components that communicate with the world outside of the individual DSpace installation, for example the
Web user interface and the Open Archives Initiative [http://www.openarchives.org/] protocol for metadata harvesting
service.

Each layer only invokes the layer below it; the application layer may not used the storage layer directly, for example.
Each component in the storage and business logic layers has a defined public API. The union of the APIs of those
components are referred to as the Storage API (in the case of the storage layer) and the DSpace Public API (in the case
of the business logic layer). These APIs are in-process Java classes, objects and methods.

http://www.openarchives.org/
http://www.openarchives.org/

DSpace System
Documentation: Architecture

108

It is important to note that each layer is trusted. Although the logic for authorising actions is in the business logic layer,
the system relies on individual applications in the application layer to correctly and securely authenticate e-people. If
a 'hostile' or insecure application were allowed to invoke the Public API directly, it could very easily perform actions
as any e-person in the system.

The reason for this design choice is that authentication methods will vary widely between different applications, so it
makes sense to leave the logic and responsibility for that in these applications.

The source code is organized to cohere very strictly to this three-layer architecture. Also, only methods in a component's
public API are given the public access level. This means that the Java compiler helps ensure that the source code
conforms to the architecture.

Table 8.1. Source Code Packages

Packages within Correspond to components in

org.dspace.app Application layer

org.dspace Business logic layer (except storage and app)

org.dspace.storage Storage layer

The storage and business logic layer APIs are extensively documented with Javadoc-style comments. Generate the
HTML version of these by entering the [dspace-source]/dspace directory and running:

mvn javadoc:javadoc

The resulting documentation will be at [dspace-source]dspace-api/target/site/apidocs/
index.html. The package-level documentation of each package usually contains an overview of the package and
some example usage. This information is not repeated in this architecture document; this and the Javadoc APIs are
intended to be used in parallel.

Each layer is described in a separate section:

• Storage Layer [storage.html]

• RDBMS [storage.html#rdbms]

• Bitstream Store [storage.html#bitstreams]

• Business Logic Layer [business.html]

• Core Classes [business.html#core]

• Content Management API [business.html#content]

• Workflow System [business.html#workflow]

• Administration Toolkit [business.html#administer]

• E-person/Group Manager [business.html#eperson]

• Authorisation [business.html#authorize]

• Handle Manager/Handle Plugin [business.html#handle]

• Search [business.html#search]

storage.html
storage.html
storage.html#rdbms
storage.html#rdbms
storage.html#bitstreams
storage.html#bitstreams
business.html
business.html
business.html#core
business.html#core
business.html#content
business.html#content
business.html#workflow
business.html#workflow
business.html#administer
business.html#administer
business.html#eperson
business.html#eperson
business.html#authorize
business.html#authorize
business.html#handle
business.html#handle
business.html#search
business.html#search

DSpace System
Documentation: Architecture

109

• Browse API [business.html#browse]

• History Recorder [business.html#history]

• Checksum Checker [business.html#checker]

• Application Layer [application.html]

• Web User Interface [application.html#webui]

• OAI-PMH Data Provider [application.html#oai]

• Item Importer and Exporter [application.html#itemimporter]

• Transferring Items Between DSpace Instances [application.html#transferitem]

• Registration [application.html#registration]

• METS Tools [application.html#mets]

• Media Filters [application.html#mediafilters]

• Sub-Community Management [application.html#filiator]

2002-2008 The DSpace Foundation

business.html#browse
business.html#browse
business.html#history
business.html#history
business.html#checker
business.html#checker
application.html
application.html
application.html#webui
application.html#webui
application.html#oai
application.html#oai
application.html#itemimporter
application.html#itemimporter
application.html#transferitem
application.html#transferitem
application.html#registration
application.html#registration
application.html#mets
application.html#mets
application.html#mediafilters
application.html#mediafilters
application.html#filiator
application.html#filiator

110

Chapter 9. DSpace System
Documentation: Application Layer
Back to architecture overview [architecture.html]

9.1. Web User Interface
The DSpace Web UI is the largest and most-used component in the application layer. Built on Java Servlet and
JavaServer Page technology, it allows end-users to access DSpace over the Web via their Web browsers. As of Dspace
1.3.2 the UI meets both XHTML 1.0 standards and Web Accessibility Initiative (WAI) level-2 standard.

It also features an administration section, consisting of pages intended for use by central administrators. Presently, this
part of the Web UI is not particularly sophisticated; users of the administration section need to know what they are
doing! Selected parts of this may also be used by collection administrators.

9.1.1. Web UI Files
The Web UI-related files are located in a variety of directories in the DSpace source tree. Note that as of DSpace version
1.2, the deployment mechanism has changed; the build process creates easy-to-deploy Web application archives (.war
files).

Table 9.1. Locations of Web UI Source Files

Location Description

org.dspace.app.webui Web UI source files

org.dspace.app.webui.filter Servlet Filters (Servlet 2.3 spec)

org.dspace.app.webui.jsptag Custom JSP tag class files

org.dspace.app.webui.servlet Servlets for main Web UI (controllers)

org.dspace.app.webui.servlet.admin Servlets that comprise the administration part of the Web
UI

org.dspace.app.webui.util Miscellaneous classes used by the servlets and filters

[dspace-source]/jsp The JSP files

[dspace-source]/jsp/local This is where you can place customized versions of JSPs --
see the configuration section [configure.html#customui]

[dspace-source]/jsp/WEB-INF/dspace-
tags.tld

Custom DSpace JSP tag descriptor

[dspace-source]/etc/dspace-web.xml The Web application deployment descriptor. Before
including in the .war file, the text @@dspace.dir@@
will be replaced with the DSpace installation directory
(referred to as [dspace] elsewhere in this system
documentation). This allows the Web application to pick
up the DSpace configuration and environment.

9.1.2. The Build Process
The DSpace build process constructs a Web application archive, which is placed in [dspace-source]/build/
dspace.war. The build_wars Ant target does the work. The process works as follows:

architecture.html
architecture.html
configure.html#customui
configure.html#customui

DSpace System Documentation:
Application Layer

111

• All the DSpace source code is compiled.

• [dspace-source]/etc/dspace-web.xml is copied to [dspace-source]/build and the
@@dspace.dir@@ token inside it replaced with the DSpace installation directory (dspace.dir property from
dspace.cfg

• The JSPs are all copied to [dspace-source]/build/jsp

• Customized JSPs from [dspace-source]/jsp/local are copied on top of these, thus 'overriding' the default
versions

• [dspace-source]/build/dspace.war is built

The contents of dspace.war are:

• (Top level) -- the JSPs (customized versions from [dspace-source]/jsp/local will have overwritten the
defaults from the DSpace source distribution)

• WEB-INF/classes -- the compiled DSpace classes

• WEB-INF/lib -- the third party library JAR files from [dspace-source]/lib, minus servlet.jar which
will be available as part of Tomcat (or other servlet engine)

• WEB-INF/web.xml -- web deployment descriptor, copied from [dspace-source]/build/dspace-
web.xml

• WEB-INF/dspace-tags.tld -- tag descriptor

Note that this does mean there are multiple copies of the compiled DSpace code and third-party libraries in the system,
so care must be taken to ensure that they are all in sync. (The storage overhead is a few megabytes, totally insignificant
these days.) In general, when you change any DSpace code or JSP, it's best to do a complete update of both the
installation ([dspace]), and to rebuild and redeploy the Web UI and OAI .war files, by running this in [dspace-
source]:

ant -D [dspace]/config/dspace.cfg update

and then following the instructions that command writes to the console.

9.1.3. Servlets and JSPs

The Web UI is loosely based around the MVC (model, view, controller) model. The content management API
corresponds to the model, the Java Servlets are the controllers, and the JSPs are the views. Interactions take the
following basic form:

1. An HTTP request is received from a browser

2. The appropriate servlet is invoked, and processes the request by invoking the DSpace business logic layer public API

3. Depending on the outcome of the processing, the servlet invokes the appropriate JSP

4. The JSP is processed and sent to the browser

The reasons for this approach are:

DSpace System Documentation:
Application Layer

112

• All of the processing is done before the JSP is invoked, so any error or problem that occurs does not occur halfway
through HTML rendering

• The JSPs contain as little code as possible, so they can be customized without having to delve into Java code too
much

The org.dspace.app.webui.servlet.LoadDSpaceConfig servlet is always loaded first. This is a very
simple servlet that checks the dspace-config context parameter from the DSpace deployment descriptor, and uses
it to locate dspace.cfg. It also loads up the Log4j configuration. It's important that this servlet is loaded first, since
if another servlet is loaded up, it will cause the system to try and load DSpace and Log4j configurations, neither of
which would be found.

All DSpace servlets are subclasses of the DSpaceServlet class. The DSpaceServlet class handles some basic
operations such as creating a DSpace Context object (opening a database connection etc.), authentication and error
handling. Instead of overriding the doGet and doPost methods as one normally would for a servlet, DSpace servlets
implement doDSGet or doDSPost which have an extra context parameter, and allow the servlet to throw various
exceptions that can be handled in a standard way.

The DSpace servlet processes the contents of the HTTP request. This might involve retrieving the results of a search
with a query term, accessing the current user's eperson record, or updating a submission in progress. According to
the results of this processing, the servlet must decide which JSP should be displayed. The servlet then fills out the
appropriate attributes in the HttpRequest object that represents the HTTP request being processed. This is done
by invoking the setAttribute method of the javax.servlet.http.HttpServletRequest object that
is passed into the servlet from Tomcat. The servlet then forwards control of the request to the appropriate JSP using
the JSPManager.showJSP method.

The JSPManager.showJSP method uses the standard Java servlet forwarding mechanism is then used to forward
the HTTP request to the JSP. The JSP is processed by Tomcat and the results sent back to the user's browser.

There is an exception to this servlet/JSP style: index.jsp, the 'home page', receives the HTTP request directly
from Tomcat without a servlet being invoked first. This is because in the servlet 2.3 specification, there is no way
to map a servlet to handle only requests made to '/'; such a mapping results in every request being directed to that
servlet. By default, Tomcat forwards requests to '/' to index.jsp. To try and make things as clean as possible,
index.jsp contains some simple code that would normally go in a servlet, and then forwards to home.jsp using
the JSPManager.showJSP method. This means localized versions of the 'home page' can be created by placing a
customized home.jsp in [dspace-source]/jsp/local, in the same manner as other JSPs.

[dspace-source]/jsp/dspace-admin/index.jsp, the administration UI index page, is invoked directly
by Tomcat and not through a servlet for similar reasons.

At the top of each JSP file, right after the license and copyright header, is documented the appropriate attributes that
a servlet must fill out prior to forwarding to that JSP. No validation is performed; if the servlet does not fill out the
necessary attributes, it is likely that an internal server error will occur.

Many JSPs containing forms will include hidden parameters that tell the servlets which form has been
filled out. The submission UI servlet (SubmissionController is a prime example of a servlet that
deals with the input from many different JSPs. The step and page hidden parameters (written out by the
SubmissionController.getSubmissionParameters() method) are used to inform the servlet which
page of which step has just been filled out (i.e. which page of the submission the user has just completed).

Below is a detailed, scary diagram depicting the flow of control during the whole process of processing and responding
to an HTTP request. More information about the authentication mechanism is mostly described in the configuration
section [configure.html#authenticate].

configure.html#authenticate
configure.html#authenticate
configure.html#authenticate

DSpace System Documentation:
Application Layer

113

Flow of Control During HTTP Request Processing

9.1.4. Custom JSP Tags

The DSpace JSPs all use some custom tags defined in /dspace/jsp/WEB-INF/dspace-tags.tld, and
the corresponding Java classes reside in org.dspace.app.webui.jsptag. The tags are listed below. The
dspace-tags.tld file contains detailed comments about how to use the tags, so that information is not repeated
here.

layout
Just about every JSP uses this tag. It produces the standard HTML header and <BODY>tag. Thus the content of each
JSP is nested inside a <dspace:layout> tag. The (XML-style)attributes of this tag are slightly complicated--
see dspace-tags.tld. The JSPs in the source code bundle also provide plenty of examples.

sidebar
Can only be used inside a layout tag, and can only be used once per JSP. The content between the start and
end sidebar tags is rendered in a column on the right-hand side of the HTML page. The contents can contain
further JSP tags and Java 'scriptlets'.

date
Displays the date represented by an org.dspace.content.DCDate object. Just the one representation of
date is rendered currently, but this could use the user's browser preferences to display a localized date in the future.

DSpace System Documentation:
Application Layer

114

include
Obsolete, simple tag, similar to jsp:include. In versions prior to DSpace 1.2, this tag would use the locally
modified version of a JSP if one was installed in jsp/local. As of 1.2, the build process now performs this function,
however this tag is left in for backwards compatibility.

item
Displays an item record, including Dublin Core metadata and links to the bitstreams within it. Note that the
displaying of the bitstream links is simplistic, and does not take into account any of the bundling structure. This
is because DSpace does not have a fully-fledged dissemination architectural piece yet.

Displaying an item record is done by a tag rather than a JSP for two reasons: Firstly, it happens in several places
(when verifying an item record during submission or workflow review, as well as during standard item accesses),
and secondly, displaying the item turns out to be mostly code-work rather than HTML anyway. Of course, the
disadvantage of doing it this way is that it is slightly harder to customize exactly what is displayed from an item
record; it is necessary to edit the tag code (org.dspace.app.webui.jsptag.ItemTag). Hopefully a
better solution can be found in the future.

itemlist, collectionlist, communitylist
These tags display ordered sequences of items, collections and communities, showing minimal information but
including a link to the page containing full details. These need to be used in HTML tables.

popup
This tag is used to render a link to a pop-up page (typically a help page.) If Javascript is available, the link will
either open or pop to the front any existing DSpace pop-up window. If Javascript is not available, a standard
HTML link is displayed that renders the link destination in a window named 'dspace.popup'. In graphical
browsers, this usually opens a new window or re-uses an existing window of that name, but if a window is re-
used it is not 'raised' which might confuse the user. In text browsers, following this link will simply replace the
current page with the destination of the link. This obviously means that Javascript offers the best functionality,
but other browsers are still supported.

selecteperson
A tag which produces a widget analogous to HTML <SELECT>, that allows a user to select one or multiple e-
people from a pop-up list.

sfxlink
Using an item's Dublin Core metadata DSpace can display an SFX link, if an SFX server is available. This tag
does so for a particular item if the sfx.server.url property is defined in dspace.cfg.

9.1.5. Internationalisation
The Java Standard Tag Library v1.0 [http://jakarta.apache.org/taglibs/doc/standard-1.0-doc/intro.html] is used to
specify messages in the JSPs like this:

OLD:

<H1>Search Results</H1>

NEW:

<H1><fmt:message key="jsp.search.results.title"
 /></H1>

This message can now be changed using the config/language-packs/Messages.properties file. (This
must be done at build-time: Messages.properties is placed in the dspace.war Web application file.)

http://jakarta.apache.org/taglibs/doc/standard-1.0-doc/intro.html
http://jakarta.apache.org/taglibs/doc/standard-1.0-doc/intro.html

DSpace System Documentation:
Application Layer

115

jsp.search.results.title = Search Results

Phrases may have parameters to be passed in, to make the job of translating easier, reduce the number of 'keys' and to
allow translators to make the translated text flow more appropriately for the target language.

OLD:

<P>Results <%= r.getFirst() %> to <%= r.getLast() %> of <%=
 r.getTotal() %></P>

NEW:

<fmt:message key="jsp.search.results.text">
 <fmt:param><%= r.getFirst() %></fmt:param>
 <fmt:param><%= r.getLast() %></fmt:param>
 <fmt:param><%= r.getTotal() %></fmt:param>
</fmt:message>

(Note: JSTL 1.0 does not seem to allow JSP <%= %> expressions to be passed in as values of attribute in <fmt:param
value=""/>)

The above would appear in the Messages_xx.properties file as:

jsp.search.results.text = Results {0}-{1} of {2}

Introducing number parameters that should be formatted according to the locale used makes no difference in the
message key compared to atring parameters:

jsp.submit.show-uploaded-file.size-in-bytes = {0} bytes

In the JSP using this key can be used in the way belov:

<fmt:message
 key="jsp.submit.show-uploaded-file.size-in-bytes">
 <fmt:param><fmt:formatNumber><%= bitstream.getSize()
 %></fmt:formatNumber></fmt:param>
</fmt:message>

(Note: JSTL offers a way to include numbers in the message keys as jsp.foo.key = {0,number} bytes.
Setting the parameter as <fmt:param value="${variable}" /> workes when variable is a single variable
name and doesn't work when trying to use a method's return value instead: bitstream.getSize(). Passing the
number as string (or using the <%= %> expression) also does not work.)

Multiple Messages.properties can be created for different languages. See ResourceBundle.getBundle [http://
java.sun.com/j2se/1.4.2/docs/api/java/util/ResourceBundle.html#getBundle(java.lang.String,%20java.util.Locale,
%20java.lang.ClassLoader)]. e.g. you can add German and Canadian French translations:

Messages_de.properties
Messages_fr_CA.properties

http://java.sun.com/j2se/1.4.2/docs/api/java/util/ResourceBundle.html#getBundle(java.lang.String,%20java.util.Locale,%20java.lang.ClassLoader)
http://java.sun.com/j2se/1.4.2/docs/api/java/util/ResourceBundle.html#getBundle(java.lang.String,%20java.util.Locale,%20java.lang.ClassLoader)
http://java.sun.com/j2se/1.4.2/docs/api/java/util/ResourceBundle.html#getBundle(java.lang.String,%20java.util.Locale,%20java.lang.ClassLoader)
http://java.sun.com/j2se/1.4.2/docs/api/java/util/ResourceBundle.html#getBundle(java.lang.String,%20java.util.Locale,%20java.lang.ClassLoader)

DSpace System Documentation:
Application Layer

116

The end user's browser settings determine which language is used. The English language file
Messages.properties (or the default server locale) will be used as a default if there's no language bundle for
the end user's preferred language. (Note that the English file is not called Messages_en.properties -- this is
so it is always available as a default, regardless of server configuration.)

The dspace:layout tag has been updated to allow dictionary keys to be passed in for the titles. It now has two
new parameters: titlekey and parenttitlekey. So where before you'd do:

<dspace:layout title="Here"
 parentlink="/mydspace"
 parenttitle="My DSpace">

You now do:

<dspace:layout titlekey="jsp.page.title"
 parentlink="/mydspace"
 parenttitlekey="jsp.mydspace">

And so the layout tag itself gets the relevant stuff out of the dictionary. title and parenttitle still work as
before for backwards compatibility, and the odd spot where that's preferable.

Message Key Convention

When translating further pages, please follow the convention for naming message keys to avoid clashes.

For text in JSPs use the complete path + filename of the JSP, then a one-word name for the message. e.g. for the
title of jsp/mydspace/main.jsp use:

jsp.mydspace.main.title

Some common words (e.g. "Help") can be brought out into keys starting jsp. for ease of translation, e.g.:

jsp.admin = Administer

Other common words/phrases are brought out into 'general' parameters if they relate to a set (directory) of JSPs, e.g.

jsp.tools.general.delete = Delete

Phrases that relate strongly to a topic (eg. MyDSpace) but used in many JSPs outside the particular directory are
more convenient to be cross-referenced. For example one could use the key below in jsp/submit/saved.jsp
to provide a link back to the user's MyDSpace:

(Cross-referencing of keys in general is not a good idea as it may make maintenance more difficult. But in some cases
it has more advantages as the meaning is obvious.)

jsp.mydspace.general.goto-mydspace = Go to My DSpace

For text in servlet code, in custom JSP tags or wherever applicable use the fully qualified classname + a one-word
name for the message. e.g.

org.dspace.app.webui.jsptag.ItemListTag.title = Title

DSpace System Documentation:
Application Layer

117

Which Languages are currently supported?

To view translations currently being developed, please refer to the i18n page [http://wiki.dspace.org/I18nSupport] of
the DSpace Wiki.

9.1.6. HTML Content in Items
For the most part, the DSpace item display just gives a link that allows an end-user to download a bitstream. However,
if a bundle has a primary bitstream whose format is of MIME type text/html, instead a link to the HTML servlet
is given.

So if we had an HTML document like this:

contents.html
chapter1.html
chapter2.html
chapter3.html
figure1.gif
figure2.jpg
figure3.gif
figure4.jpg
figure5.gif
figure6.gif

The Bundle's primary bitstream field would point to the contents.html Bitstream, which we know is HTML (check the
format MIME type) and so we know which to serve up first.

The HTML servlet employs a trick to serve up HTML documents without actually modifying the HTML or other
files themselves. Say someone is looking at contents.html from the above example, the URL in their browser
will look like this:

https://dspace.mit.edu/html/1721.1/12345/contents.html

If there's an image called figure1.gif in that HTML page, the browser will do HTTP GET on this URL:

https://dspace.mit.edu/html/1721.1/12345/figure1.gif

The HTML document servlet can work out which item the user is looking at, and then which Bitstream in it is called
figure1.gif, and serve up that bitstream. Similar for following links to other HTML pages. Of course all the links
and image references have to be relative and not absolute.

HTML documents must be "self-contained", as explained here [functional.html#html]. Provided that full path
information is known by DSpace, any depth or complexity of HTML document can be served subject to those
contraints. This is usually possible with some kind of batch import. If, however, the document has been uploaded one
file at a time using the Web UI, the path information has been stripped. The system can cope with relative links that
refer to a deeper path, e.g.

If the item has been uploaded via the Web submit UI, in the Bitstream table in the database we have the 'name' field,
which will contain the filename with no path (figure1.gif). We can still work out what images/figure1.gif
is by making the HTML document servlet strip any path that comes in from the URL, e.g.

http://wiki.dspace.org/I18nSupport
http://wiki.dspace.org/I18nSupport
functional.html#html
functional.html#html

DSpace System Documentation:
Application Layer

118

https://dspace.mit.edu/html/1721.1/12345/images/figure1.gif
 ^^^^^^^
 Strip this

BUT all the filenames (regardless of directory names) must be unique. For example, this wouldn't work:

contents.html
chapter1.html
chapter2.html
chapter1_images/figure.gif
chapter2_images/figure.gif

since the HTML document servlet wouldn't know which bitstream to serve up for:

https://dspace.mit.edu/html/1721.1/12345/chapter1_images/figure.gif
https://dspace.mit.edu/html/1721.1/12345/chapter2_images/figure.gif

since it would just have figure.gif

To prevent "infinite URL spaces" appearing (e.g. if a file foo.html linked to bar/foo.html, which would link to
bar/bar/foo.html...) this behavior can be configured by setting the configuration property webui.html.max-
depth-guess.

For example, if we receive a request for foo/bar/index.html, and we have a bitstream called just index.html,
we will serve up that bitstream for the request if webui.html.max-depth-guess is 2 or greater. If
webui.html.max-depth-guess is 1 or less, we would not serve that bitstream, as the depth of the file is
greater. If webui.html.max-depth-guess is zero, the request filename and path must always exactly match
the bitstream name. The default value (if that property is not present in dspace.cfg) is 3.

9.1.7. Thesis Blocking
The submission UI has an optional feature that came about as a result of MIT Libraries policy. If the block.theses
parameter in dspace.cfg is true, an extra checkbox is included in the first page of the submission UI. This asks
the user if the submission is a thesis. If the user checks this box, the submission is halted (deleted) and an error message
displayed, explaining that DSpace should not be used to submit theses. This feature can be turned off and on, and the
message displayed (/dspace/jsp/submit/no-theses.jsp can be localized as necessary.

9.2. OAI-PMH Data Provider
The DSpace platform supports the Open Archives Initiative Protocol for Metadata Harvesting [http://
www.openarchives.org/] (OAI-PMH) version 2.0 as a data provider. This is accomplished using the OAICat
framework from OCLC [http://www.oclc.org/research/software/oai/cat.shtm].

The DSpace build process builds a Web application archive, [dspace-source]/build/oai.war), in much
the same way as the Web UI build process described above. The only differences are that the JSPs are not included,
and [dspace-source]/etc/oai-web.xml is used as the deployment descriptor. This 'webapp' is deployed to
receive and respond to OAI-PMH requests via HTTP. Note that typically it should not be deployed on SSL (https:
protocol). In a typical configuration, this is deployed at oai, for example:

http://dspace.myu.edu/oai/request?verb=Identify

http://www.openarchives.org/
http://www.openarchives.org/
http://www.openarchives.org/
http://www.oclc.org/research/software/oai/cat.shtm
http://www.oclc.org/research/software/oai/cat.shtm
http://www.oclc.org/research/software/oai/cat.shtm

DSpace System Documentation:
Application Layer

119

The 'base URL' of this DSpace deployment would be:

http://dspace.myu.edu/oai/request

It is this URL that should be registered with www.openarchives.org [http://www.openarchives.org/]. Note that you
can easily change the 'request' portion of the URL by editing [dspace-source]/etc/oai-web.xml and
rebuilding and deploying oai.war.

DSpace provides implementations of the OAICat interfaces AbstractCatalog, RecordFactory and
Crosswalk that interface with the DSpace content management API and harvesting API (in the search subsystem).

Only the basic oai_dc unqualified Dublin Core metadata set export is enabled by default; this is particularly
easy since all items have qualified Dublin Core metadata. When this metadata is harvested, the qualifiers
are simply stripped; for example, description.abstract is exposed as unqualified description. The
description.provenance field is hidden, as this contains private information about the submitter and workflow
reviewers of the item, including their e-mail addresses. Additionally, to keep in line with OAI community practices,
values of contributor.author are exposed as creator values.

Other metadata formats are supported as well, using other Crosswalk implementations; consult the
oaicat.properties file described below. To enable a format, simply uncomment the lines beginning with
Crosswalks.*. Multiple formats are allowed, and the current list includes, in addition to unqualified DC: MPEG
DIDL, METS, MODS. There is also an incomplete, experimental qualified DC.

Note that the current simple DC implementation (org.dspace.app.oai.OAIDCCrosswalk) does not currently
strip out any invalid XML characters that may be lying around in the data. If your database contains a DC value with,
for example, some ASCII control codes (form feed etc.) this may cause OAI harvesters problems. This should rarely
occur, however. XML entities (such as >) are encoded (e.g. to >)

In addition to the implementations of the OAICat interfaces, there are two configuration files relevant to OAI support:

oaicat.properties
This resides as a template in [dspace]/config/templates, and the live version is written to [dspace]/
config. You probably won't need to edit this; the install-configs script fills out the relevant deployment-
specific parameters. You might want to change the earliestDatestamp field to accurately reflect the oldest
datestamp in the system. (Note that this is the value of the last_modified column in the Item database table.)

oai-web.xml
This standard Java Servlet 'deployment descriptor' is stored in the source as [dspace-source]/etc/oai-
web.xml, and is written to /dspace/oai/WEB-INF/web.xml.

9.2.1. Sets
OAI-PMH allows repositories to expose an hierarchy of sets in which records may be placed. A record can be in zero
or more sets.

DSpace exposes collections as sets. The organization of communities is likely to change over time, and is therefore
a less stable basis for selective harvesting.

Each collection has a corresponding OAI set, discoverable by harvesters via the ListSets verb. The setSpec is the
Handle of the collection, with the ':' and '/' converted to underscores so that the Handle is a legal setSpec, for example:

hdl_1721.1_1234

Naturally enough, the collection name is also the name of the corresponding set.

http://www.openarchives.org/
http://www.openarchives.org/

DSpace System Documentation:
Application Layer

120

9.2.2. Unique Identifier
Every item in OAI-PMH data repository must have an unique identifier, which must conform to the URI syntax. As
of DSpace 1.2, Handles are not used; this is because in OAI-PMH, the OAI identifier identifies the metadata record
associated with the resource. The resource is the DSpace item, whose resource identifier is the Handle. In practical
terms, using the Handle for the OAI identifier may cause problems in the future if DSpace instances share items with
the same Handles; the OAI metadata record identifiers should be different as the different DSpace instances would
need to be harvested separately and may have different metadata for the item.

The OAI identifiers that DSpace uses are of the form:

oai:host name:handle

For example:

oai:dspace.myu.edu:123456789/345

If you wish to use a different scheme, this can easily be changed by editing the value of OAI_ID_PREFIX at the top
of the org.dspace.app.oai.DSpaceOAICatalog class. (You do not need to change the code if the above
scheme works for you; the code picks up the host name and Handles automatically from the DSpace configuration.)

9.2.3. Access control
OAI provides no authentication/authorisation details, although these could be implemented using standard HTTP
methods. It is assumed that all access will be anonymous for the time being.

A question is, "is all metadata public?" Presently the answer to this is yes; all metadata is exposed via OAI-PMH, even
if the item has restricted access policies. The reasoning behind this is that people who do actually have permission to
read a restricted item should still be able to use OAI-based services to discover the content.

If in the future, this 'expose all metadata' approach proves unsatisfactory for any reason, it should be possible to
expose only publicly readable metadata. The authorisation system has separate permissions for READing and item
and READing the content (bitstreams) within it. This means the system can differentiate between an item with public
metadata and hidden content, and an item with hidden metadata as well as hidden content. In this case the OAI data
repository should only expose items those with anonymous READ access, so it can hide the existence of records to
the outside world completely. In this scenario, one should be wary of protected items that are made public after a time.
When this happens, the items are "new" from the OAI-PMH perspective.

9.2.4. Modification Date (OAI Date Stamp)
OAI-PMH harvesters need to know when a record has been created, changed or deleted. DSpace keeps track of a 'last
modified' date for each item in the system, and this date is used for the OAI-PMH date stamp. This means that any
changes to the metadata (e.g. admins correcting a field, or a withdrawal) will be exposed to harvesters.

9.2.5. 'About' Information
As part of each record given out to a harvester, there is an optional, repeatable "about" section which can be filled
out in any (XML-schema conformant) way. Common uses are for provenance and rights information, and there are
schemas in use by OAI communities for this. Presently DSpace does not provide any of this information.

9.2.6. Deletions
DSpace keeps track of deletions (withdrawals). These are exposed via OAI, which has a specific mechansim for
dealing with this. Since DSpace keeps a permanent record of withdrawn items, in the OAI-PMH sense DSpace supports

DSpace System Documentation:
Application Layer

121

deletions 'persistently'. This is as opposed to 'transient' deletion support, which would mean that deleted records are
forgotten after a time.

Once an item has been withdrawn, OAI-PMH harvests of the date range in which the withdrawal occurred will find
the 'deleted' record header. Harvests of a date range prior to the withdrawal will not find the record, despite the fact
that the record did exist at that time.

As an example of this, consider an item that was created on 2002-05-02 and withdrawn on 2002-10-06. A request to
harvest the month 2002-10 will yield the 'record deleted' header. However, a harvest of the month 2002-05 will not
yield the original record.

Note that presently, the deletion of 'expunged' items is not exposed through OAI.

9.2.7. Flow Control (Resumption Tokens)
An OAI data provider can prevent any performance impact caused by harvesting by forcing a harvester to receive data
in time-separated chunks. If the data provider receives a request for a lot of data, it can send part of the data with a
resumption token. The harvester can then return later with the resumption token and continue.

DSpace supports resumption tokens for 'ListRecords' OAI-PMH requests. ListIdentifiers and ListSets requests do not
produce a particularly high load on the system, so resumption tokens are not used for those requests.

Each OAI-PMH ListRecords request will return at most 100 records. This limit is set at the top of
org.dspace.app.oai.DSpaceOAICatalog.java (MAX_RECORDS). A potential issue here is that if a
harvest yields an exact multiple of MAX_RECORDS, the last operation will result in a harvest with no records in it. It
is unclear from the OAI-PMH specification if this is acceptable.

When a resumption token is issued, the optional completeListSize and cursor attributes are not included.
OAICat sets the expirationDate of the resumption token to one hour after it was issued, though in fact since
DSpace resumption tokens contain all the information required to continue a request they do not actually expire.

Resumption tokens contain all the state information required to continue a request. The format is:

from/until/setSpec/offset

from and until are the ISO 8601 dates passed in as part of the original request, and setSpec is also taken from
the original request. offset is the number of records that have already been sent to the harvester. For example:

2003-01-01//hdl_1721_1_1234/300

This means the harvest is 'from' 2003-01-01, has no 'until' date, is for collection hdl:1721.1/1234, and 300 records
have already been sent to the harvester. (Actually, if the original OAI-PMH request doesn't specify a 'from' or 'until,
OAICat fills them out automatically to '0000-00-00T00:00:00Z' and '9999-12-31T23:59:59Z' respectively. This means
DSpace resumption tokens will always have from and until dates in them.)

9.3. Community and Collection Structure
Importer
This command-line tool gives you the ability to import a community and collection structure directly from a source
XML file. It is executed as follows:

[dspace]/bin/structure-builder -f [source xml] -o [output xml file] -e
[administrator email]

DSpace System Documentation:
Application Layer

122

This will examine the contents of [source xml], import the structure into DSpace while logged in as the supplied
administrator, and then output the same structure to the output file, but including the handle for each imported
community and collection as an attribute.

The source xml document needs to be in the following format:

<import_structure>
 <community>
 <name>Community Name</name>
 <description>Descriptive
 text</description>
 <intro>Introductory text</intro>
 <copyright>Special copyright
 notice</copyright>
 <sidebar>Sidebar text</sidebar>
 <community>
 <name>Sub Community Name</name>
 <community> ...[ad infinitum]...
 </community>
 </community>
 <collection>
 <name>Collection Name</name>
 <description>Descriptive
 text</description>
 <intro>Introductory text</intro>
 <copyright>Special copyright
 notice</copyright>
 <sidebar>Sidebar text</sidebar>
 <license>Special
 licence</license>
 <provenance>Provenance
 information</provenance>
 </collection>
 </community>
</import_structure>

The resulting output document will be as follows:

<import_structure>
 <community identifier="123456789/1">
 <name>Community Name</name>
 <description>Descriptive
 text</description>
 <intro>Introductory text</intro>
 <copyright>Special copyright
 notice</copyright>
 <sidebar>Sidebar text</sidebar>
 <community identifier="123456789/2">
 <name>Sub Community Name</name>
 <community identifier="123456789/3"> ...[ad
 infinitum]... </community>
 </community>
 <collection identifier="123456789/4">

DSpace System Documentation:
Application Layer

123

 <name>Collection Name</name>
 <description>Descriptive
 text</description>
 <intro>Introductory text</intro>
 <copyright>Special copyright
 notice</copyright>
 <sidebar>Sidebar text</sidebar>
 <license>Special
 licence</license>
 <provenance>Provenance
 information</provenance>
 </collection>
 </community>
</import_structure>

9.3.1. Limitation
• Currently this does not export community and collection structures, although it should only be a small modification

to make it do so

9.4. Package Importer and Exporter
This command-line tool gives you access to the Packager plugins. It can ingest a package to create a new DSpace
Item, or disseminate an Item as a package.

To see all the options, invoke it as:

 [dspace]/bin/packager --help

This mode also displays a list of the names of package ingesters and disseminators that are available.

9.4.1. Ingesting
To ingest a package from a file, give the command:

 [dspace]/bin/packager -e user -c handle -t packager
 path

Where user is the e-mail address of the E-Person under whose authority this runs; handle is the Handle of the collection
into which the Item is added, packager is the plugin name of the package ingester to use, and path is the path to the
file to ingest (or "-" to read from the standard input).

Here is an example that loads a PDF file with internal metadata as a package:

/dspace/bin/packager -e florey@mit.edu -c 1721.2/13 -t pdf
 thesis.pdf

This example takes the result of retrieving a URL and ingests it:

wget -O - http://alum.mit.edu/jarandom/my-thesis.pdf | \
/dspace/bin/packager -e florey@mit.edu -c 1721.2/13 -t pdf -

DSpace System Documentation:
Application Layer

124

9.4.2. Disseminating
To disseminate an Item as a package, give the command:

 [dspace]/bin/packager -e user -d -i handle -t packager
 path

Where user is the e-mail address of the E-Person under whose authority this runs; handle is the Handle of the Item to
disseminate; packager is the plugin name of the package disseminator to use; and path is the path to the file to create
(or "-" to write to the standard output). This example writes an Item out as a METS package in the file "454.zip":

/dspace/bin/packager -e florey@mit.edu -d -i 1721.2/454 -t METS
 454.zip

9.4.3. METS packages
DSpace 1.4 includes a package disseminator and matching ingester for the DSpace METS SIP (Submission Information
Package) format. They were created to help end users prepare sets of digital resources and metadata for submission
to the archive using well-defined standards such as METS [http://www.loc.gov/standards/mets/], MODS [http://
www.loc.gov/standards/mods/], and PREMIS [http://www.loc.gov/standards/premis/]. The plugin name is METS by
default, and it uses MODS for descriptive metadata.

The DSpace METS SIP profile is available at: http://www.dspace.org/standards/METS/SIP/
profilev1p0/metsipv1p0.pdf [http://www.dspace.org/standards/METS/SIP/profilev1p0/metsipv1p0.pdf] .

9.5. Item Importer and Exporter
DSpace has a set of command line tools for importing and exporting items in batches, using the DSpace simple archive
format. The tools are not terribly robust, but are useful and are easily modified. They also give a good demonstration
of how to implement your own item importer if desired.

9.5.1. DSpace simple archive format
The basic concept behind the DSpace's simple archive format is to create an archive, which is directory full of items,
with a subdirectory per item. Each item directory contains a file for the item's descriptive metadata, and the files that
make up the item.

archive_directory/
 item_000/
 dublin_core.xml -- qualified Dublin Core metadata
 contents -- text file containing one line per filename
 file_1.doc -- files to be added as bitstreams to the
 item
 file_2.pdf
 item_001/
 dublin_core.xml
 contents
 file_1.png
 ...

http://www.loc.gov/standards/mets/
http://www.loc.gov/standards/mets/
http://www.loc.gov/standards/mods/
http://www.loc.gov/standards/mods/
http://www.loc.gov/standards/mods/
http://www.loc.gov/standards/premis/
http://www.loc.gov/standards/premis/
http://www.dspace.org/standards/METS/SIP/profilev1p0/metsipv1p0.pdf
http://www.dspace.org/standards/METS/SIP/profilev1p0/metsipv1p0.pdf
http://www.dspace.org/standards/METS/SIP/profilev1p0/metsipv1p0.pdf

DSpace System Documentation:
Application Layer

125

The dublin_core.xml file has the following format, where each Dublin Core element has it's own entry within a
<dcvalue> tagset. There are currently three tag attributes available in the <dcvalue> tagset:

• <element> - the Dublin Core element

• <qualifier> - the element's qualifier

• <language> - (optional)ISO language code for element

<dublin_core>
 <dcvalue element="title" qualifier="none">A Tale of Two
 Cities</dcvalue>
 <dcvalue element="date"
 qualifier="issued">1990</dcvalue></dublin_core>

t;
 <dcvalue element="title" qualifier="alternate" language="fr"
 ">J'aime les Printemps</dcvalue>
</dublin_core>

(Note the optional language tag attribute which notifies the system that the optional title is in French.)

The contents file simply enumerates, one file per line, the bitstream file names. The bitstream name may optionally
be followed by the sequence:

\tbundle:bundlename

where '\t' is the tab character and 'bundlename' is replaced by the name of the bundle to which the bitstream should be
added. If no bundle is specified, the bitstream will be added to the 'ORIGINAL' bundle.

9.5.2. Importing Items
Note: Before running the item importer over items previously exported from a DSpace instance, please first refer to
Transferring Items Between DSpace Instances [application.html#transferitem].

The item importer is in org.dspace.app.itemimport.ItemImport, and is run with the import utility in
the dspace/bin directory. Running it with -h gets the current command-line arguments. Another very important
flag is the --test flag, which you can use with any command to simulate all of the actions it will perform without
actually making any changes to your DSpace instance - very useful for validating your item directories before doing
an import. In the importer's arguments you can use either the user's database ID or email address and the eperson ID,
and the collection's database ID or handle as arguments. Currently with the importer you can add, remove, and replace
items in a collection. If you specify more than one collection argument then the items will be imported to multiple
collections, and the first collection specified becomes the "owning" collection. If there is an error and the import is
aborted, there is a --resume flag that you can try to resume the import where you left off after you fix the error.

To add items to a collection with an EPerson as the submitter, type:

[dspace]/bin/import --add --eperson=joe@user.com
 --collection=collectionID --source=items_dir --mapfile=mapfile

(or by using the short form)

application.html#transferitem
application.html#transferitem

DSpace System Documentation:
Application Layer

126

[dspace]/bin/import -a -e joe@user.com -c collectionID -s items_dir
 -m mapfile

which would then cycle through the archive directory's items, import them, and then generate a map file which stores
the mapping of item directories to item handles. Save this map file! Using the map file you can then 'unimport' with
the command:

[dspace]/bin/import --delete --mapfile=mapfile

The imported items listed in the map file would then be deleted. If you wish to replace previously imported items,
you can give the command:

[dspace]/bin/import --replace --eperson=joe@user.com
 --collection=collectID --source=items_dir --mapfile=mapfile

Replacing items uses the map file to replace the old items and still retain their handles.

The importer usually bypasses any workflow assigned to a collection, but adding the --workflow option will route the
imported items through the workflow system.

The importer also has a --test flag that will simulate the entire import process without actually doing the import. This
is extremely useful for verifying your import files before doing the import step.

9.5.3. Exporting Items
The item exporter can export a single item or a collection of items, and creates a DSpace simple archive for each item
to be exported. To export a collection's items you type:

[dspace]/bin/export --type=COLLECTION --id=collID --dest=dest_dir
 --number=seq_num

The keyword COLLECTION means that you intend to export an entire collection. The ID can either be the database
ID or the handle. The exporter will begin numbering the simple archives with the sequence number that you supply.
To export a single item use the keyword ITEM and give the item ID as an argument:

[dspace]/bin/export --type=ITEM --id=itemID --dest=dest_dir
 --number=seq_num

Each exported item will have an additional file in its directory, named 'handle'. This will contain the handle that was
assigned to the item, and this file will be read by the importer so that items exported and then imported to another
machine will retain the item's original handle.

9.6. Transferring Items Between DSpace
Instances
Where items are to be moved between DSpace instances (for example from a test DSpace into a production DSpace)
the item exporter and item importer can be used in conjunction with a script to assist in this process.

After running the item exporter each dublin_core.xml file will contain metadata that was automatically added
by DSpace. These fields are as follows:

DSpace System Documentation:
Application Layer

127

• date.accessioned

• date.available

• date.issued

• description.provenance

• format.extent

• format.mimetype

• identifier.uri

In order to avoid duplication of this metadata, run

dspace_migrate <exported item directory>

prior to running the item importer. This will remove the above metadata items, except for date.issued - if the item has
been published or publicly distributed before and identifier.uri - if it is not the handle, from the dublin_core.xml
file and remove all handle files. It will then be safe to run the item exporter. Use

dspace_migrate --help

for instructions on use of the script.

9.7. Registering (Not Importing) Bitstreams
Registration is an alternate means of incorporating items, their metadata, and their bitstreams into DSpace by taking
advantage of the bitstreams already being in storage accessible to DSpace. An example might be that there is a
repository for existing digital assets. Rather than using the normal interactive ingest process [functional.html#ingest] or
the batch import [functional.html#importexport] to furnish DSpace the metadata and to upload bitstreams, registration
provides DSpace the metadata and the location of the bitstreams. DSpace uses a variation of the import tool to
accomplish registration.

9.7.1. Accessible Storage
To register an item its bitstreams must reside on storage accessible to DSpace and therefore referenced by an asset
store number in dspace.cfg. The configuration file dspace.cfg establishes one or more asset stores through
the use of an integer asset store number. This number relates to a directory in the DSpace host's file system or a set
of SRB account parameters. This asset store number is described in The dspace.cfg Configuration Properties File
[configure.html#dspacecfg] section and in the dspace.cfg file itself. The asset store number(s) used for registered
items should generally not be the value of the assetstore.incoming property since it is unlikely that that you
will want to mix the bitstreams of normally ingested and imported items and registered items.

9.7.2. Registering Items Using the Item Importer
DSpace uses the same import tool that is used for batch import except that several variations are employed to support
registration. The discussion that follows assumes familiarity with the import tool.

The archive format for registration does not include the actual content files (bitstreams) being registered. The format
is however a directory full of items to be registered, with a subdirectory per item. Each item directory contains a file
for the item's descriptive metadata (dublin_core.xml) and a file listing the item's content files (contents), but
not the actual content files themselves.

functional.html#ingest
functional.html#ingest
functional.html#importexport
functional.html#importexport
configure.html#dspacecfg
configure.html#dspacecfg

DSpace System Documentation:
Application Layer

128

The dublin_core.xml file for item registration is exactly the same as for regular item import.

The contents file, like that for regular item import, lists the item's content files, one content file per line, but each
line has the one of the following formats:

-r -s n -f filepath
-r -s n -f filepath\tbundle:bundlename
-r -s n -f filepath\tbundle:bundlename\tpermissions: -[r|w] 'group
 name'
-r -s n -f filepath\tbundle:bundlename\tpermissions: -[r|w] 'group
 name'\tdescription: some text

where

• -r indicates this is a file to be registered

• -s n indicates the asset store number (n)

• -f filepath indicates the path and name of the content file to be registered (filepath)

• \t is a tab character

• bundle:bundlename is an optional bundle name

• permissions: -[r|w] 'group name' is an optional read or write permission that can be attached to the
bitstream

• description: some text is an optional description field to add to the file

The bundle, that is everything after the filepath, is optional and is normally not used.

The command line for registration is just like the one for regular import:

dsrun org.dspace.app.itemimport.ItemImport --add
 --eperson=joe@user.com --collection=collectionID --source=items_dir
 --mapfile=mapfile

(or by using the short form)

dsrun org.dspace.app.itemimport.ItemImport -a -e joe@user.com -c
 collectionID -s items_dir -m mapfile

The --workflow and --test flags will function as described in Importing Items
[application.html#importingitems].

The --delete flag will function as described in Importing Items [application.html#importingitems] but the
registered content files will not be removed from storage. See Deleting Registered Items.

The --replace flag will function as described in Importing Items [application.html#importingitems] but care
should be taken to consider different cases and implications. With old items and new items being registered
or ingested normally, there are four combinations or cases to consider. Foremost, an old registered item
deleted from DSpace using --replace will not be removed from the storage. See Deleting Registered Items
[application.html#deletingregistereditems]. where is resides. A new item added to DSpace using --replace will be
ingested normally or will be registered depending on whether or not it is marked in the contents files with the -r.

application.html#importingitems
application.html#importingitems
application.html#importingitems
application.html#importingitems
application.html#importingitems
application.html#importingitems
application.html#deletingregistereditems
application.html#deletingregistereditems

DSpace System Documentation:
Application Layer

129

9.7.3. Internal Identification and Retrieval of Registered
Items
Once an item has been registered, superficially it is indistinguishable from items ingested interactively or by batch
import. But internally there are some differences:

First, the randomly generated internal ID is not used because DSpace does not control the file path and name of the
bitstream. Instead, the file path and name are that specified in the contents file.

Second, the store_number column of the bitstream database row contains the asset store number specified in the
contents file.

Third, the internal_id column of the bitstream database row contains a leading flag (-R) followed by the registered
file path and name. For example, -Rfilepath where filepath is the file path and name relative to the asset store
corresponding to the asset store number. The asset store could be traditional storage in the DSpace server's file system
or an SRB account.

Fourth, an MD5 checksum is calculated by reading the registered file if it is in local storage. If the registerd file is in
remote storage (say, SRB) a checksum is calulated on just the file name! This is an efficiency choice since registering
a large number of large files that are in SRB would consume substantial network resources and time. A future option
could be to have an SRB proxy process calculate MD5s and store them in SRB's metadata catalog (MCAT) for rapid
retrieval. SRB offers such an option but it's not yet in production release.

Registered items and their bitstreams can be retrieved transparently just like normally ingested items.

9.7.4. Exporting Registered Items
Registered items may be exported as described in Exporting Items. If so, the export directory will contain actual copies
of the files being exported but the lines in the contents file will flag the files as registered. This means that if DSpace
items are "round tripped" (see Transferring Items Between DSpace Instances) using the exporter and importer, the
registered files in the export directory will again registered in DSpace instead of being uploaded and ingested normally.

9.7.5. METS Export of Registered Items
The METS Export Tool can also be used but note the cautions described in that section and note that MD5 values for
items in remote storage are actually MD5 values on just the file name.

9.7.6. Deleting Registered Items
If a registered item is deleted from DSpace, either interactively or by using the --delete or --replace
flags described in Importing Items [application.html#importingitems], the item will disappear from DSpace but it's
registered content files will remain in place just as they were prior to registration. Bitstreams not registered but added
by DSpace as part of registration, such as license.txt files, will be deleted.

9.8. METS Tools
The experimental (incomplete) METS export tool writes DSpace items to a filesystem with the metadata held in a
more standard format based on METS.

9.8.1. The Export Tool
The METS export tool is invoked via the command line like this:

application.html#importingitems
application.html#importingitems

DSpace System Documentation:
Application Layer

130

 [dspace]/bin/dsrun org.dspace.app.mets.METSExport
 --help

The tool can export an individual item, the items within a given collection, or everything in the DSpace instance. To
export an individual item, use:

 [dspace]/bin/dsrun org.dspace.app.mets.METSExport --item
 [handle]

To export the items in collection hdl:123.456/789, use:

 [dspace]/bin/dsrun org.dspace.app.mets.METSExport --collection
 hdl:123.456/789

To export all the items DSpace, use:

 [dspace]/bin/dsrun org.dspace.app.mets.METSExport
 --all

With any of the above forms, you can specify the base directory into which the items will be exported, using --
destination [directory]. If this parameter is omitted, the current directory is used.

9.8.2. The AIP Format
Each exported item is written to a separate directory, created under the base directory specified in the command-line
arguments, or in the current directory if --destination is omitted. The name of each directory is the Handle,
URL-encoded so that the directory name is 'legal'.

Within each item directory is a mets.xml file which contains the METS-encoded metadata for the item. Bitstreams in
the item are also stored in the directory. Their filenames are their MD5 checksums, firstly for easy integrity checking,
and also to avoid any problems with 'special characters' in the filenames that were legal on the original filing system
they came from but are illegal in the server filing system. The mets.xml file includes XLink pointers to these
bitstream files.

An example AIP might look like this:

• hdl%3A123456789%2F8/

• mets.xml -- METS metadata

• 184BE84F293342 -- bitstream

• 3F9AD0389CB821

• 135FB82113C32D

The contents of the METS in the mets.xml file are as follows:

• A dmdSec (descriptive metadata section) containing the item's metadata in Metadata Object Description Schema
(MODS) [http://www.loc.gov/standards/mods/] XML. The Dublin Core descriptive metadata is mapped to MODS
since there is no official qualified Dublin Core XML schema in existence as of yet, and the Library Application
Profile of DC that DSpace uses includes some qualifiers that are not part of the DCMI Metadata Terms [http://
dublincore.org/documents/dcmi-terms/].

http://www.loc.gov/standards/mods/
http://www.loc.gov/standards/mods/
http://www.loc.gov/standards/mods/
http://dublincore.org/documents/dcmi-terms/
http://dublincore.org/documents/dcmi-terms/
http://dublincore.org/documents/dcmi-terms/

DSpace System Documentation:
Application Layer

131

• An amdSec (administrative metadata section), which contains the a rights metadata element, which in turn contains
the base64-encoded deposit license (the license the submitter granted as part of the submission process).

• A fileSec containing a list of the bitstreams in the item. Each bundle constitutes a fileGrp. Each bitstream is
represented by a file element, which contains an FLocat element with a simple XLink to the bitstream in the
same directory as the mets.xml file. The file attributes consist of most of the basic technical metadata for the
bitstream. Additionally, for those bitstreams that are thumbnails or text extracted from another bitstream in the item,
those 'derived' bitstreams have the same GROUPID as the bitstream they were derived from, in order that clients
understand that there is a relationship.

The OWNERID of each file is the 'persistent' bitstream identifier [functional.html#bitstream_ids] assigned by
the DSpace instance. The ID and GROUPID attributes consist of the item's Handle, together with the bitstream's
sequence ID, which underscores used in place of dots and slashes. For example, a bitstream with sequence ID 24, in
the item hdl:123.456/789 will have the ID123_456_789_24. This is because ID and GROUPID attributes
must be of type xsd:id.

9.8.3. Limitations
• No corresponding import tool yet

• No structmap section

• Some technical metadata not written, e.g. the primary bitstream in a bundle, original filenames or descriptions.

• Only the MIME type is stored, not the (finer grained) bitstream format.

• Dublin Core to MODS mapping is very simple, probably needs verification

9.9. MediaFilters: Transforming DSpace
Content
DSpace can apply filters to content/bitstreams, creating new content. Filters are included that extract text for
full-text searching, and create thumbnails for items that contain images. The media filters are controlled by
the MediaFilterManager which traverses the asset store, invoking the MediaFilter or FormatFilter
classes on bitstreams. The media filter plugin configuration filter.plugins in dspace.cfg contains a list
of all enabled media/format filter plugins (see Configuring Media Filters [configure.html#mediafilters] for more
information). The media filter system is intended to be run from the command line (or regularly as a cron task):

[dspace]/bin/filter-media

With no options, this traverses the asset store, applying media filters to bitstreams, and skipping bitstreams that have
already been filtered.

Available Command-Line Options:

• Help : [dspace]/bin/filter-media -h

• Display help message describing all command-line options.

• Force mode : [dspace]/bin/filter-media -f

• Apply filters to ALL bitstreams, even if they've already been filtered. If they've already been filtered, the
previously filtered content is overwritten.

functional.html#bitstream_ids
functional.html#bitstream_ids
configure.html#mediafilters
configure.html#mediafilters

DSpace System Documentation:
Application Layer

132

• Identifier mode : [dspace]/bin/filter-media -i 123456789/2

• Restrict processing to the community, collection, or item named by the identifier - by default, all bitstreams of
all items in the repository are processed. The identifier must be a Handle, not a DB key. This option may be
combined with any other option.

• Maximum mode : [dspace]/bin/filter-media -m 1000

• Suspend operation after the specified maximum number of items have been processed - by default, no limit exists.
This option may be combined with any other option.

• No-Index mode : [dspace]/bin/filter-media -n

• Suppress index creation - by default, a new search index is created for full-text searching. This option suppresses
index creation if you intend to run index-all elsewhere.

• Plugin mode : [dspace]/bin/filter-media -p "PDF Text Extractor","Word Text
Extractor"

• Apply ONLY the filter plugin(s) listed (separated by commas). By default all named filters listed in the
filter.plugins field of dspace.cfg are applied. This option may be combined with any other option.
WARNING: multiple plugin names must be separated by a comma (i.e. ',') and NOT a comma followed by a
space (i.e. ', ').

• Skip mode : [dspace]/bin/filter-media -s 123456789/9,123456789/100

• SKIP the listed identifiers (separated by commas) during processing. The identifiers must be Handles (not DB
Keys). They may refer to items, collections or communities which should be skipped. This option may be
combined with any other option. WARNING: multiple identifiers must be separated by a comma (i.e. ',') and NOT
a comma followed by a space (i.e. ', ').

• NOTE: If you have a large number of identifiers to skip, you may maintain this comma-separated list within a
separate file (e.g. filter-skiplist.txt), and call it similar to the following:

• [dspace]/bin/filter-media -s `less filter-skiplist.txt`

• Verbose mode : [dspace]/bin/filter-media -v

• Verbose mode - print all extracted text and other filter details to STDOUT.

Adding your own filters is done by creating a class which implements the
org.dspace.app.mediafilter.FormatFilter interface. See the Creating a new Media Filter
[configure.html#newfilter] topic and comments in the source file FormatFilter.java for more information. In theory
filters could be implemented in any programming language (C, Perl, etc.) However, they need to be invoked by the
Java code in the Media Filter class that you create.

9.10. Sub-Community Management
DSpace provides an administrative tool - 'CommunityFiliator' - for managing community sub-structure. Normally this
structure seldom changes, but prior to the 1.2 release sub-communities were not supported, so this tool could be used
to place existing pre-1.2 communities into a hierarchy. It has two operations, either establishing a community to sub-
community relationship, or dis-establishing an existing relationship.

The familiar parent/child metaphor can be used to explain how it works. Every community in DSpace can be either a
'parent' community - meaning it has at least one sub-community, or a 'child' community - meaning it is a sub-community
of another community, or both or neither. In these terms, an 'orphan' is a community that lacks a parent (although it can

configure.html#newfilter
configure.html#newfilter

DSpace System Documentation:
Application Layer

133

be a parent); 'orphans' are referred to as 'top-level' communities in the DSpace user-interface, since there is no parent
community 'above' them. The first operation - establishing a parent/child relationship - can take place between any
community and an orphan. The second operation - removing a parent/child relationship - will make the child an orphan.

Using the dsrun utility in the dspace/bin directory, the establish operation looks like this:

dsrun org.dspace.administer.CommunityFiliator --set --parent=parentID
 --child=childID

(or using the short form)

dsrun org.dspace.administer.CommunityFiliator -s -p parentID -c
 childID

where '-s' or '--set' means establish a relationship whereby the community identified by the '-p' parameter becomes
the parent of the community identified by the '-c' parameter. Both the 'parentID' and 'childID' values may be handles
or database IDs.

The reverse operation looks like this:

dsrun org.dspace.administer.CommunityFiliator --remove
 --parent=parentID --child=childID

(or using the short form)

dsrun org.dspace.administer.CommunityFiliator -r -p parentID -c
 childID

where '-r' or '--remove' means dis-establish the current relationship in which the community identified by 'parentID'
is the parent of the community identified by 'childID'. The outcome will be that the 'childID' community will become
an orphan, i.e. a top-level community.

If the required constraints of operation are violated, an error message will appear explaining the problem, and no
change will be made. An example in a removal operation, where the stated child community does not have the stated
parent community as its parent: "Error, child community not a child of parent community".

It is possible to effect arbitrary changes to the community hierarchy by chaining the basic operations together. For
example, to move a child community from one parent to another, simply perform a 'remove' from its current parent
(which will leave it an orphan), followed by a 'set' to its new parent.

It is important to understand that when any operation is performed, all the sub-structure of the child community follows
it. Thus, if a child has itself children (sub-communities), or collections, they will all move with it to its new 'location'
in the community tree.

134

Chapter 10. DSpace System
Documentation: Business Logic Layer

10.1. Core Classes
The org.dspace.core package provides some basic classes that are used throughout the DSpace code.

10.1.1. The Configuration Manager
(ConfigurationManager)
The configuration manager is responsible for reading the main dspace.cfg properties file, managing the 'template'
configuration files for other applications such as Apache, and for obtaining the text for e-mail messages.

The system is configured by editing the relevant files in /dspace/config, as described in the configuration section
[configure.html].

When editing configuration files for applications that DSpace uses, such as Apache, remember to edit the file in /
dspace/config/templates and then run /dspace/bin/install-configs rather than editing the 'live' version directly!

The ConfigurationManager class can also be invoked as a command line tool, with two possible uses:

•

 /dspace/bin/install-configs

This processes and installs configuration files for other applications, as described in the configuration section
[configure.html#templates].

•

 /dspace/bin/dsrun
 org.dspace.core.ConfigurationManager -property
 property.name

This writes the value of property.name from dspace.cfg to the standard output, so that shell scripts can
access the DSpace configuration. For an example, see /dspace/bin/start-handle-server. If the property
has no value, nothing is written.

10.1.2. Constants
This class contains constants that are used to represent types of object and actions in the database. For example,
authorization policies can relate to objects of different types, so the resourcepolicy table has columns
resource_id, which is the internal ID of the object, and resource_type_id, which indicates whether the
object is an item, collection, bitstream etc. The value of resource_type_id is taken from the Constants class,
for example Constants.ITEM.

configure.html
configure.html
configure.html#templates
configure.html#templates

DSpace System Documentation:
Business Logic Layer

135

10.1.3. Context
The Context class is central to the DSpace operation. Any code that wishes to use the any API in the business logic
layer must first create itself a Context object. This is akin to opening a connection to a database (which is in fact
one of the things that happens.)

A context object is involved in most method calls and object constructors, so that the method or object has access
to information about the current operation. When the context object is constructed, the following information is
automatically initialized:

• A connection to the database. This is a transaction-safe connection. i.e. the 'auto-commit' flag is set to false.

• A cache of content management API objects. Each time a content object is created (for example Item or
Bitstream) it is stored in the Context object. If the object is then requested again, the cached copy is used.
Apart from reducing database use, this addresses the problem of having two copies of the same object in memory
in different states.

The following information is also held in a context object, though it is the responsiblity of the application creating
the context object to fill it out correctly:

• The current authenticated user, if any

• Any 'special groups' the user is a member of. For example, a user might automatically be part of a particular group
based on the IP address they are accessing DSpace from, even though they don't have an e-person record. Such a
group is called a 'special group'.

• Any extra information from the application layer that should be added to log messages that are written within this
context. For example, the Web UI adds a session ID, so that when the logs are analysed the actions of a particular
user in a particular session can be tracked.

• A flag indicating whether authorization should be circumvented. This should only be used in rare, specific
circumstances. For example, when first installing the system, there are no authorized administrators who would be
able to create an administrator account!

As noted above, the public API is trusted, so it is up to applications in the application layer to use this flag
responsibly.

Typical use of the context object will involve constructing one, and setting the current user if one is authenticated.
Several operations may be performed using the context object. If all goes well, complete is called to commit the
changes and free up any resources used by the context. If anything has gone wrong, abort is called to roll back any
changes and free up the resources.

You should always abort a context if any error happens during its lifespan; otherwise the data in the system may be
left in an inconsistent state. You can also commit a context, which means that any changes are written to the database,
and the context is kept active for further use.

10.1.4. Email
Sending e-mails is pretty easy. Just use the configuration manager's getEmail method, set the arguments and
recipients, and send.

The e-mail texts are stored in /dspace/config/emails. They are processed by the standard
java.text.MessageFormat. At the top of each e-mail are listed the appropriate arguments that should be filled
out by the sender. Example usage is shown in the org.dspace.core.Email Javadoc API documentation.

DSpace System Documentation:
Business Logic Layer

136

10.1.5. LogManager
The log manager consists of a method that creates a standard log header, and returns it as a string suitable for logging.
Note that this class does not actually write anything to the logs; the log header returned should be logged directly by
the sender using an appropriate Log4J call, so that information about where the logging is taking place is also stored.

The level of logging can be configured on a per-package or per-class basis by editing /dspace/config/
templates/log4j.properties and then executing /dspace/bin/install-configs. You will need to
stop and restart Tomcat for the changes to take effect.

A typical log entry looks like this:

2002-11-11 08:11:32,903 INFO org.dspace.app.webui.servlet.DSpaceServlet @
anonymous:session_id=BD84E7C194C2CF4BD0EC3A6CAD0142BB:view_item:handle=1721.1/1686

This is breaks down like this:

Date and time, milliseconds 2002-11-11 08:11:32,903

Level (FATAL, WARN, INFO or DEBUG) INFO

Java class org.dspace.app.webui.servlet.DSpaceServlet

@

User email or anonymous anonymous

:

Extra log info from context session_id=BD84E7C194C2CF4BD0EC3A6CAD0142BB

:

Action view_item

:

Extra info handle=1721.1/1686

The above format allows the logs to be easily parsed and analysed. The /dspace/bin/log-reporter script is
a simple tool for analysing logs. Try:

/dspace/bin/log-reporter --help

It's a good idea to 'nice' this log reporter to avoid an impact on server performance.

10.1.6. Utils
Utils comtains miscellaneous utility method that are required in a variety of places throughout the code, and thus
have no particular 'home' in a subsystem.

10.2. Content Management API
The content management API package org.dspace.content contains Java classes for reading and manipulating
content stored in the DSpace system. This is the API that components in the application layer will probably use most.

Classes corresponding to the main elements in the DSpace data model [functional.html#data_model] (Community,
Collection, Item, Bundle and Bitstream) are sub-classes of the abstract class DSpaceObject. The Item
object handles the Dublin Core metadata record.

functional.html#data_model
functional.html#data_model

DSpace System Documentation:
Business Logic Layer

137

Each class generally has one or more static find methods, which are used to instantiate content objects. Constructors
do not have public access and are just used internally. The reasons for this are:

• "Constructing" an object may be misconstrued as the action of creating an object in the DSpace system, for example
one might expect something like:

Context dsContent = new Context();
Item myItem = new Item(context, id)

to construct a brand new item in the system, rather than simply instantiating an in-memory instance of an object
in the system.

• find methods may often be called with invalid IDs, and return null in such a case. A constructor would have
to throw an exception in this case. A null return value from a static method can in general be dealt with more
simply in code.

• If an instantiation representing the same underlying archival entity already exists, the find method can simply
return that same instantiation to avoid multiple copies and any inconsistencies which might result.

Collection, Bundle and Bitstream do not have create methods; rather, one has to create an object using
the relevant method on the container. For example, to create a collection, one must invoke createCollection on
the community that the collection is to appear in:

Context context = new Context();
Community existingCommunity = Community.find(context, 123);
Collection myNewCollection = existingCommunity.createCollection();

The primary reason for this is for determining authorization. In order to know whether an e-person may create an
object, the system must know which container the object is to be added to. It makes no sense to create a collection
outside of a community, and the authorization system does not have a policy for that.

Items are first created in the form of an implementation of InProgressSubmission. An
InProgressSubmission represents an item under construction; once it is complete, it is installed into the
main archive and added to the relevant collection by the InstallItem class. The org.dspace.content
package provides an implementation of InProgressSubmission called WorkspaceItem; this is a simple
implementation that contains some fields used by the Web submission UI. The org.dspace.workflow also
contains an implementation called WorkflowItem which represents a submission undergoing a workflow process.

In the previous chapter there is an overview of the item ingest process [functional.html#ingest] which should clarify
the previous paragraph. Also see the section on the workflow system.

Community and BitstreamFormat do have static create methods; one must be a site administrator to have
authorization to invoke these.

10.2.1. Other Classes
Classes whose name begins DC are for manipulating Dublin Core metadata, as explained below.

The FormatIdentifier class attempts to guess the bitstream format of a particular bitstream. Presently, it does
this simply by looking at any file extension in the bitstream name and matching it up with the file extensions associated
with bitstream formats. Hopefully this can be greatly improved in the future!

The ItemIterator class allows items to be retrieved from storage one at a time, and is returned by methods that
may return a large number of items, more than would be desirable to have in memory at once.

functional.html#ingest
functional.html#ingest

DSpace System Documentation:
Business Logic Layer

138

The ItemComparator class is an implementation of the standard java.util.Comparator that can be used to
compare and order items based on a particular Dublin Core metadata field.

10.2.2. Modifications
When creating, modifying or for whatever reason removing data with the content management API, it is important to
know when changes happen in-memory, and when they occur in the physical DSpace storage.

Primarily, one should note that no change made using a particular org.dspace.core.Context object will
actually be made in the underlying storage unless complete or commit is invoked on that Context. If anything
should go wrong during an operation, the context should always be aborted by invoking abort, to ensure that no
inconsistent state is written to the storage.

Additionally, some changes made to objects only happen in-memory. In these cases, invoking the update method
lines up the in-memory changes to occur in storage when the Context is committed or completed. In general, methods
that change any [meta]data field only make the change in-memory; methods that involve relationships with other
objects in the system line up the changes to be committed with the context. See individual methods in the API Javadoc.

Some examples to illustrate this are shown below:

Context context = new Context();
Bitstream b = Bitstream.find(context,
 1234);
b.setName("newfile.txt");
b.update();
context.complete();

Will change storage

Context context = new Context();
Bitstream b = Bitstream.find(context,
 1234);
b.setName("newfile.txt");
b.update();
context.abort();

Will not change storage (context aborted)

Context context = new Context();
Bitstream b = Bitstream.find(context,
 1234);
b.setName("newfile.txt");
context.complete();

The new name will not be stored since update was not
invoked

Context context = new Context();
Bitstream bs = Bitstream.find(context,
 1234);
Bundle bnd = Bundle.find(context,
 5678);
bnd.add(bs);
context.complete();

The bitstream will be included in the bundle, since
update doesn't need to be called

10.2.3. What's In Memory?
Instantiating some content objects also causes other content objects to be loaded into memory.

DSpace System Documentation:
Business Logic Layer

139

Instantiating a Bitstream object causes the appropriate BitstreamFormat object to be instantiated. Of course
the Bitstream object does not load the underlying bits from the bitstream store into memory!

Instantiating a Bundle object causes the appropriate Bitstream objects (and hence BitstreamFormats) to be
instantiated.

Instantiating an Item object causes the appropriate Bundle objects (etc.) and hence BitstreamFormats to be
instantiated. All the Dublin Core metadata associated with that item are also loaded into memory.

The reasoning behind this is that for the vast majority of cases, anyone instantiating an item object is going to need
information about the bundles and bitstreams within it, and this methodology allows that to be done in the most efficient
way and is simple for the caller. For example, in the Web UI, the servlet (controller) needs to pass information about
an item to the viewer (JSP), which needs to have all the information in-memory to display the item without further
accesses to the database which may cause errors mid-display.

You do not need to worry about multiple in-memory instantiations of the same object, or any inconsistenties
that may result; the Context object keeps a cache of the instantiated objects. The find methods of classes in
org.dspace.content will use a cached object if one exists.

It may be that in enough cases this automatic instantiation of contained objects reduces performance in situations where
it is important; if this proves to be true the API may be changed in the future to include a loadContents method
or somesuch, or perhaps a Boolean parameter indicating what to do will be added to the find methods.

When a Context object is completed, aborted or garbage-collected, any objects instantiated using that context are
invalidated and should not be used (in much the same way an AWT button is invalid if the window containing it is
destroyed).

10.2.4. Dublin Core Metadata
The DCValue class is a simple container that represents a single Dublin Core element, optional qualifier, value and
language. Note that since DSpace 1.4 the MetadataValue and associated classes are preferred (see Support for
Other Metadata Schemas). The other classes starting with DC are utility classes for handling types of data in Dublin
Core, such as people's names and dates. As supplied, the DSpace registry of elements and qualifiers corresponds
to the Library Application Profile [http://www.dublincore.org/documents/2002/09/24/library-application-profile/] for
Dublin Core. It should be noted that these utility classes assume that the values will be in a certain syntax, which will
be true for all data generated within the DSpace system, but since Dublin Core does not always define strict syntax,
this may not be true for Dublin Core originating outside DSpace.

Below is the specific syntax that DSpace expects various fields to adhere to:

Element Qualifier Syntax Helper Class

date Any or unqualified ISO 8601 in the UTC
time zone, with either year,
month, day, or second
precision. Examples:
2000 2002-10
2002-08-14
1999-01-01T14:35:23Z

DCDate

contributor Any or unqualified In general last name,
then a comma, then first
names, then any additional
information like "Jr.". If
the contributor is an
organization, then simply
the name. Examples:

DCPersonName

http://www.dublincore.org/documents/2002/09/24/library-application-profile/
http://www.dublincore.org/documents/2002/09/24/library-application-profile/

DSpace System Documentation:
Business Logic Layer

140

Doe, John Smith,
John Jr. van Dyke,
Dick Massachusetts
Institute of
Technology

language iso A two letter code taken ISO
639, followed optionally
by a two letter country
code taken from ISO 3166.
Examples:
en fr en_US

DCLanguage

relation ispartofseries The series name, following
by a semicolon followed by
the number in that series.
Alternatively, just free text.
MIT-TR; 1234 My
Report Series;
ABC-1234 NS1234

DCSeriesNumber

10.2.5. Support for Other Metadata Schemas
To support additional metadata schemas a new set of metadata classes have been added. These are backwards
compatible with the DC classes and should be used rather than the DC specific classes whereever possible. Note that
hierarchical metadata schemas are not currently supported, only flat schemas (such as DC) are able to be defined.

The MetadataField class describes a metadata field by schema, element and optional qualifier. The value of a
MetadataField is described by a MetadataValue which is roughly equivalent to the older DCValue class.
Finally the MetadataSchema class is used to describe supported schemas. The DC schema is supported by default.
Refer to the javadoc for method details.

10.2.6. Packager Plugins
The Packager plugins let you ingest a package to create a new DSpace Object, and disseminate a content Object as a
package. A package is simply a data stream; its contents are defined by the packager plugin's implementation.

To ingest an object, which is currently only implemented for Items, the sequence of operations is:

1. Get an instance of the chosen PackageIngester plugin.

2. Locate a Collection in which to create the new Item.

3. Call its ingest method, and get back a WorkspaceItem.

The packager also takes a PackageParameters object, which is a property list of parameters specific to that
packager which might be passed in from the user interface.

Here is an example package ingestion code fragment:

 Collection collection = find target
 collection
 InputStream source = ...;
 PackageParameters params = ...;
 String license = null;

DSpace System Documentation:
Business Logic Layer

141

 PackageIngester sip = (PackageIngester) PluginManager
 .getNamedPlugin(PackageIngester.class, packageType);

 WorkspaceItem wi = sip.ingest(context, collection, source,
 params, license);

Here is an example of a package dissemination:

 OutputStream destination = ...;
 PackageParameters params = ...;
 DSpaceObject dso = ...;

 PackageIngester dip = (PackageDisseminator) PluginManager
 .getNamedPlugin(PackageDisseminator.class, packageType);

 dip.disseminate(context, dso, params, destination);

10.3. Plugin Manager
The PluginManager is a very simple component container. It creates and organizes components (plugins), and helps
select a plugin in the cases where there are many possible choices. It also gives some limited control over the lifecycle
of a plugin.

10.3.1. Concepts
The following terms are important in understanding the rest of this section:

• Plugin Interface A Java interface, the defining characteristic of a plugin. The consumer of a plugin asks for its
plugin by interface.

• Plugin a.k.a. Component, this is an instance of a class that implements a certain interface. It is interchangeable with
other implementations, so that any of them may be "plugged in", hence the name. A Plugin is an instance of any
class that implements the plugin interface.

• Implementation class The actual class of a plugin. It may implement several plugin interfaces, but must implement
at least one.

• Name Plugin implementations can be distinguished from each other by name, a short String meant to symbolically
represent the implementation class. They are called "named plugins". Plugins only need to be named when the caller
has to make an active choice between them.

• SelfNamedPlugin class Plugins that extend the SelfNamedPlugin class can take advantage of additional
features of the Plugin Manager. Any class can be managed as a plugin, so it is not necessary, just possible.

• Reusable Reusable plugins are only instantiated once, and the Plugin Manager returns the same (cached) instance
whenever that same plugin is requested again. This behavior can be turned off if desired.

10.3.2. Using the Plugin Manager

Types of Plugin

The Plugin Manager supports three different patterns of usage:

DSpace System Documentation:
Business Logic Layer

142

1. Singleton Plugins There is only one implementation class for the plugin. It is indicated in the configuration. This
type of plugin chooses an implementation of a service, for the entire system, at configuration time. Your application
just fetches the plugin for that interface and gets the configured-in choice. See the getSinglePlugin() method.

2. Sequence Plugins You need a sequence or series of plugins, to implement a mechanism like Stackable
Authentication or a pipeline, where each plugin is called in order to contribute its implementation of a process to
the whole. The Plugin Manager supports this by letting you configure a sequence of plugins for a given interface.
See the getPluginSequence() method.

3. Named Plugins Use a named plugin when the application has to choose one plugin implementation out of many
available ones. Each implementation is bound to one or more names (symbolic identifiers) in the configuration.

The name is just a string to be associated with the combination of implementation class and interface. It may contain
any characters except for comma (,) and equals (=). It may contain embedded spaces. Comma is a special character
used to separate names in the configuration entry.

Names must be unique within an interface: No plugin classes implementing the same interface may have the same
name.

Think of plugin names as a controlled vocabulary -- for a given plugin interface, there is a set of names for which
plugins can be found. The designer of a Named Plugin interface is responsible for deciding what the name means
and how to derive it; for example, names of metadata crosswalk plugins may describe the target metadata format.

See the getNamedPlugin() method and the getPluginNames() methods.

Self-Named Plugins

Named plugins can get their names either from the configuration or, for a variant called self-named plugins, from
within the plugin itself.

Self-named plugins are necessary because one plugin implementation can be configured itself to take on many
"personalities", each of which deserves its own plugin name. It is already managing its own configuration for each of
these personalities, so it makes sense to allow it to export them to the Plugin Manager rather than expecting the plugin
configuration to be kept in sync with it own configuration.

An example helps clarify the point: There is a named plugin that does crosswalks, call it CrosswalkPlugin. It has
several implementations that crosswalk some kind of metadata. Now we add a new plugin which uses XSL stylesheet
transformation (XSLT) to crosswalk many types of metadata -- so the single plugin can act like many different plugins,
depending on which stylesheet it employs.

This XSLT-crosswalk plugin has its own configuration that maps a Plugin Name to a stylesheet -- it has to, since of
course the Plugin Manager doesn't know anything about stylesheets. It becomes a self-named plugin, so that it reads
its configuration data, gets the list of names to which it can respond, and passes those on to the Plugin Manager.

When the Plugin Manager creates an instance of the XSLT-crosswalk, it records the Plugin Name that was responsible
for that instance. The plugin can look at that Name later in order to configure itself correctly for the Name that created
it. This mechanism is all part of the SelfNamedPlugin class which is part of any self-named plugin.

Obtaining a Plugin Instance

The most common thing you will do with the Plugin Manager is obtain an instance of a plugin. To request a plugin,
you must always specify the plugin interface you want. You will also supply a name when asking for a named plugin.

A sequence plugin is returned as an array of Objects since it is actually an ordered list of plugins.

See the getSinglePlugin(), getPluginSequence(), getNamedPlugin() methods.

DSpace System Documentation:
Business Logic Layer

143

Lifecycle Management

When PluginManager fulfills a request for a plugin, it checks whether the implementation class is reusable; if so,
it creates one instance of that class and returns it for every subsequent request for that interface and name. If it is not
reusable, a new instance is always created.

For reasons that will become clear later, the manager actually caches a separate instance of an implementation class
for each name under which it can be requested.

You can ask the PluginManager to forget about (decache) a plugin instance, by releasing it. See the
PluginManager.releasePlugin() method. The manager will drop its reference to the plugin so the garbage collector can
reclaim it. The next time that plugin/name combination is requested, it will create a new instance.

Getting Meta-Information

The PluginManager can list all the names of the Named Plugins which implement an interface. You may need
this, for example, to implement a menu in a user interface that presents a choice among all possible plugins. See the
getPluginNames() method.

Note that it only returns the plugin name, so if you need a more sophisticated or meaningful "label" (i.e. a key into the
I18N message catalog) then you should add a method to the plugin itself to return that.

10.3.3. Implementation
Note: The PluginManager refers to interfaces and classes internally only by their names whenever possible, to
avoid loading classes until absolutely necessary (i.e. to create an instance). As you'll see below, self-named classes
still have to be loaded to query them for names, but for the most part it can avoid loading classes. This saves a lot of
time at start-up and keeps the JVM memory footprint down, too. As the Plugin Manager gets used for more classes,
this will become a greater concern.

The only downside of "on-demand" loading is that errors in the configuration don't get discovered right away. The
solution is to call the checkConfiguration() method after making any changes to the configuration.

PluginManager Class

The PluginManager class is your main interface to the Plugin Manager. It behaves like a factory class that never
gets instantiated, so its public methods are static.

Here are the public methods, followed by explanations:

•
static Object getSinglePlugin(Class intface)
 throws PluginConfigurationError;

Returns an instance of the singleton (single) plugin implementing the given interface. There must be exactly one
single plugin configured for this interface, otherwise the PluginConfigurationError is thrown.

Note that this is the only "get plugin" method which throws an exception. It is typically used at initialization time
to set up a permanent part of the system so any failure is fatal.

See the plugin.single configuration key for configuration details.

• static Object[] getPluginSequence(Class intface); Returns instances of all plugins that
implement the interface intface, in an Array. Returns an empty array if no there are no matching plugins.

DSpace System Documentation:
Business Logic Layer

144

The order of the plugins in the array is the same as their class names in the configuration's value field.

See the plugin.sequence configuration key for configuration details.

• static Object getNamedPlugin(Class intface, String name); Returns an instance of a plugin
that implements the interface intface and is bound to a name matching name. If there is no matching plugin, it
returns null. The names are matched by String.equals().

See the plugin.named and plugin.selfnamed configuration keys for configuration details.

• static void releasePlugin(Object plugin); Tells the Plugin Manager to let go of any references
to a reusable plugin, to prevent it from being given out again and to allow the object to be garbage-collected. Call
this when a plugin instance must be taken out of circulation.

• static String[] getAllPluginNames(Class intface); Returns all of the names under which a
named plugin implementing the interface intface can be requested (with getNamedPlugin()). The array is
empty if there are no matches. Use this to populate a menu of plugins for interactive selection, or to document what
the possible choices are.

The names are NOT returned in any predictable order, so you may wish to sort them first.

Note: Since a plugin may be bound to more than one name, the list of names this returns does not represent the list of
plugins. To get the list of unique implementation classes corresponding to the names, you might have to eliminate
duplicates (i.e. create a Set of classes).

• static void checkConfiguration(); Validates the keys in the DSpace ConfigurationManager
pertaining to the Plugin Manager and reports any errors by logging them. This is intended to be used interactively
by a DSpace administrator, to check the configuration file after modifying it. See the section about validating
configuration for details.

SelfNamedPlugin Class

A named plugin implementation must extend this class if it wants to supply its own Plugin Name(s). See Self-Named
Plugins for why this is sometimes necessary.

abstract class SelfNamedPlugin
{
 // Your class must override this:
 // Return all names by which this plugin should be known.
 public static String[] getPluginNames();

 // Returns the name under which this instance was created.
 // This is implemented by SelfNamedPlugin and should NOT be
 overridden.
 public String getPluginInstanceName();
}

Errors and Exceptions

public class PluginConfigurationError extends Error
{
 public PluginConfigurationError(String message);

DSpace System Documentation:
Business Logic Layer

145

}

An error of this type means the caller asked for a single plugin, but either there was no single plugin configured
matching that interface, or there was more than one. Either case causes a fatal configuration error.

public class PluginInstantiationException extends RuntimeException
{
 public PluginInstantiationException(String msg, Throwable cause)
}

This exception indicates a fatal error when instantiating a plugin class. It should only be thrown when something
unexpected happens in the course of instantiating a plugin, e.g. an access error, class not found, etc. Simply not finding
a class in the configuration is not an exception.

This is a RuntimeException so it doesn't have to be declared, and can be passed all the way up to a generalized
fatal exception handler.

10.3.4. Configuring Plugins
All of the Plugin Manager's configuration comes from the DSpace Configuration Manager, which is a Java Properties
map. You can configure these characteristics of each plugin:

1. Interface : Classname of the Java interface which defines the plugin, including package name. e.g.
org.dspace.app.mediafilter.FormatFilter

2. Implementation Class : Classname of the implementation class, including package. e.g.
org.dspace.app.mediafilter.PDFFilter

3. Names : (Named plugins only) There are two ways to bind names to plugins: listing them in the value of a
plugin.named.interface key, or configuring a class in plugin.selfnamed.interface which extends the
SelfNamedPlugin class.

4. Reusable option : (Optional) This is declared in a plugin.reusable configuration line. Plugins are reusable
by default, so you only need to configure the non-reusable ones.

Configuring Singleton (Single) Plugins

This entry configures a Single Plugin for use with getSinglePlugin():

plugin.single.interface = classname

For example, this configures the class org.dspace.checker.SimpleDispatcher as the plugin for interface
org.dspace.checker.BitstreamDispatcher:

plugin.single.org.dspace.checker.BitstreamDispatcher=org.dspace.checker.SimpleDispatcher

Configuring Sequence of Plugins

This kind of configuration entry defines a Sequence Plugin, which is bound to a sequence of implementation classes.
The key identifies the interface, and the value is a comma-separated list of classnames:

plugin.sequence.interface = classname, ...

The plugins are returned by getPluginSequence() in the same order as their classes are listed in the configuration
value.

DSpace System Documentation:
Business Logic Layer

146

For example, this entry configures Stackable Authentication with three implementation classes:

plugin.sequence.org.dspace.eperson.AuthenticationMethod = \
 org.dspace.eperson.X509Authentication, \
 org.dspace.eperson.PasswordAuthentication, \
 edu.mit.dspace.MITSpecialGroup

Configuring Named Plugins

There are two ways of configuring named plugins:

1. Plugins Named in the Configuration A named plugin which gets its name(s) from the configuration is listed in
this kind of entry:

plugin.named.interface = classname = name [, name..] [classname = name..]

The syntax of the configuration value is: classname, followed by an equal-sign and then at least one plugin name.
Bind more names to the same implementation class by by adding them here, separated by commas. Names may
include any character other than comma (,) and equal-sign (=).

For example, this entry creates one plugin with the names GIF, JPEG, and image/png, and another with the name
TeX:

plugin.named.org.dspace.app.mediafilter.MediaFilter = \
 org.dspace.app.mediafilter.JPEGFilter = GIF, JPEG, image/png
 \
 org.dspace.app.mediafilter.TeXFilter = TeX

This example shows a plugin name with an embedded whitespace character. Since comma (,) is the separator
character between plugin names, spaces are legal (between words of a name; leading and trailing spaces are ignored).

This plugin is bound to the names "Adobe PDF", "PDF", and "Portable Document Format".

plugin.named.org.dspace.app.mediafilter.MediaFilter = \
 org.dspace.app.mediafilter.TeXFilter = TeX \
 org.dspace.app.mediafilter.PDFFilter = Adobe PDF, PDF,
 Portable Document Format

NOTE: Since there can only be one key with plugin.named. followed by the interface name in the configuration,
all of the plugin implementations must be configured in that entry.

2. Self-Named Plugins Since a self-named plugin supplies its own names through a static method call, the
configuration only has to include its interface and classname:

plugin.selfnamed.interface = classname [, classname..]

The following example first demonstrates how the plugin class, XsltDisseminationCrosswalk is
configured to implement its own names "MODS" and "DublinCore". These come from the keys starting with
crosswalk.dissemination.stylesheet.. The value is a stylesheet file.

The class is then configured as a self-named plugin:

DSpace System Documentation:
Business Logic Layer

147

crosswalk.dissemination.stylesheet.DublinCore =
 xwalk/TESTDIM-2-DC_copy.xsl
crosswalk.dissemination.stylesheet.MODS = xwalk/mods.xsl

plugin.selfnamed.crosswalk.org.dspace.content.metadata.DisseminationCr
osswalk = \
 org.dspace.content.metadata.MODSDisseminationCrosswalk, \
 org.dspace.content.metadata.XsltDisseminationCrosswalk

NOTE: Since there can only be one key with plugin.selfnamed. followed by the interface name in the configuration,
all of the plugin implementations must be configured in that entry. The MODSDisseminationCrosswalk class
is only shown to illustrate this point.

Configuring the Reusable Status of a Plugin

Plugins are assumed to be reusable by default, so you only need to configure the ones which you would prefer not
to be reusable. The format is as follows:

plugin.reusable.classname = (true | false)

For example, this marks the PDF plugin from the example above as non-reusable:

plugin.reusable.org.dspace.app.mediafilter.PDFFilter = false

10.3.5. Validating the Configuration
The Plugin Manager is very sensitive to mistakes in the DSpace configuration. Subtle errors can have unexpected
consequnces that are hard to detect: for example, if there are two "plugin.single" entries for the same interface, one
of them will be silently ignored.

To validate the Plugin Manager configuration, call the PluginManager.checkConfiguration() method. It
looks for the following mistakes:

• Any duplicate keys starting with "plugin.".

• Keys starting plugin.single, plugin.sequence, plugin.named, and plugin.selfnamed that don't
include a valid interface.

• Classnames in the configuration values that don't exist, or don't implement the plugin interface in the key.

• Classes declared in plugin.selfnamed lines that don't extend the SelfNamedPlugin class.

• Any name collisions among named plugins for a given interface.

• Named plugin configuration entries without any names.

• Classnames mentioned in plugin.reusable keys must exist and have been configured as a plugin
implementation class.

The PluginManager class also has a main() method which simply runs checkConfiguration(), so you
can invoke it from the command line to test the validity of plugin configuration changes.

Eventually, someone should develop a general configuration-file sanity checker for DSpace, which would just call
PluginManager.checkConfiguration().

DSpace System Documentation:
Business Logic Layer

148

10.3.6. Use Cases
Here are some usage examples to illustrate how the Plugin Manager works.

Managing the MediaFilter plugins transparently

The existing DSpace 1.3 MediaFilterManager implementation has been largely replaced by the Plugin Manager.
The MediaFilter classes become plugins named in the configuration. Refer to the configuration guide
[configure.html#mediafilters] for further details.

A Singleton Plugin

This shows how to configure and access a single anonymous plugin, such as the BitstreamDispatcher plugin:

Configuration:

plugin.single.org.dspace.checker.BitstreamDispatcher=org.dspace.checker.SimpleDispatcher

The following code fragment shows how dispatcher, the service object, is initialized and used:

BitstreamDispatcher dispatcher =

 (BitstreamDispatcher)PluginManager.getSinglePlugin(BitstreamDispatcher
.class);

int id = dispatcher.next();

while (id != BitstreamDispatcher.SENTINEL)
{
 /*
 do some processing here
 */

 id = dispatcher.next();
}

Plugin that Names Itself

This crosswalk plugin acts like many different plugins since it is configured with different XSL translation stylesheets.
Since it already gets each of its stylesheets out of the DSpace configuration, it makes sense to have the plugin give
PluginManager the names to which it answers instead of forcing someone to configure those names in two places (and
try to keep them synchronized).

NOTE: Remember how getPlugin() caches a separate instance of an implementation class for every name bound
to it? This is why: the instance can look at the name under which it was invoked and configure itself specifically for
that name. Since the instance for each name might be different, the Plugin Manager has to cache a separate instance
for each name.

Here is the configuration file listing both the plugin's own configuration and the PluginManager config line:

crosswalk.dissemination.stylesheet.DublinCore =
 xwalk/TESTDIM-2-DC_copy.xsl

configure.html#mediafilters
configure.html#mediafilters

DSpace System Documentation:
Business Logic Layer

149

crosswalk.dissemination.stylesheet.MODS = xwalk/mods.xsl

plugin.selfnamed.org.dspace.content.metadata.DisseminationCrosswalk =
 \
 org.dspace.content.metadata.XsltDisseminationCrosswalk

This look into the implementation shows how it finds configuration entries to populate the array of plugin names
returned by the getPluginNames() method. Also note, in the getStylesheet() method, how it uses the plugin
name that created the current instance (returned by getPluginInstanceName()) to find the correct stylesheet.

public class XsltDisseminationCrosswalk extends SelfNamedPlugin
{

 private final String prefix =
 "crosswalk.dissemination.stylesheet.";

 public static String[] getPluginNames()
 {
 List aliasList = new ArrayList();
 Enumeration pe = ConfigurationManager.propertyNames();

 while (pe.hasMoreElements())
 {
 String key = (String)pe.nextElement();
 if (key.startsWith(prefix))
 aliasList.add(key.substring(prefix.length()));
 }
 return (String[])aliasList.toArray(new
 String[aliasList.size()]);
 }

 // get the crosswalk stylesheet for an instance of the plugin:
 private String getStylesheet()
 {
 return ConfigurationManager.getProperty(prefix +
 getPluginInstanceName());
 }
}

Stackable Authentication

The Stackable Authentication mechanism needs to know all of the plugins configured for the interface, in the order of
configuration, since order is significant. It gets a Sequence Plugin from the Plugin Manager. Refer to the configuration
guide [configure.html#authenticate] for further details.

10.4. Workflow System
The primary classes are:

org.dspace.content.WorkspaceItem contains an Item before it enters a workflow

org.dspace.workflow.WorkflowItem contains an Item while in a workflow

configure.html#authenticate
configure.html#authenticate
configure.html#authenticate

DSpace System Documentation:
Business Logic Layer

150

org.dspace.workflow.WorkflowManager responds to events, manages the WorkflowItem states

org.dspace.content.Collection contains List of defined workflow steps

org.dspace.eperson.Group people who can perform workflow tasks are defined in
EPerson Groups

org.dspace.core.Email used to email messages to Group members and submitters

The workflow system models the states of an Item in a state machine with 5 states (SUBMIT, STEP_1, STEP_2,
STEP_3, ARCHIVE.) These are the three optional steps where the item can be viewed and corrected by different
groups of people. Actually, it's more like 8 states, with STEP_1_POOL, STEP_2_POOL, and STEP_3_POOL. These
pooled states are when items are waiting to enter the primary states.

The WorkflowManager is invoked by events. While an Item is being submitted, it is held by a WorkspaceItem. Calling
the start() method in the WorkflowManager converts a WorkspaceItem to a WorkflowItem, and begins processing
the WorkflowItem's state. Since all three steps of the workflow are optional, if no steps are defined, then the Item is
simply archived.

Workflows are set per Collection, and steps are defined by creating corresponding entries in the List named
workflowGroup. If you wish the workflow to have a step 1, use the administration tools for Collections to create a
workflow Group with members who you want to be able to view and approve the Item, and the workflowGroup[0]
becomes set with the ID of that Group.

If a step is defined in a Collection's workflow, then the WorkflowItem's state is set to that step_POOL. This pooled
state is the WorkflowItem waiting for an EPerson in that group to claim the step's task for that WorkflowItem.
The WorkflowManager emails the members of that Group notifying them that there is a task to be performed
(the text is defined in config/emails,) and when an EPerson goes to their 'My DSpace' page to claim the task, the
WorkflowManager is invoked with a claim event, and the WorkflowItem's state advances from STEP_x_POOL
to STEP_x (where x is the corresponding step.) The EPerson can also generate an 'unclaim' event, returning the
WorkflowItem to the STEP_x_POOL.

Other events the WorkflowManager handles are advance(), which advances the WorkflowItem to the next state. If
there are no further states, then the WorkflowItem is removed, and the Item is then archived. An EPerson performing
one of the tasks can reject the Item, which stops the workflow, rebuilds the WorkspaceItem for it and sends a rejection
note to the submitter. More drastically, an abort() event is generated by the admin tools to cancel a workflow outright.

10.5. Administration Toolkit
The org.dspace.administer package contains some classes for administering a DSpace system that are not
generally needed by most applications.

The CreateAdministrator class is a simple command-line tool, executed via /dspace/bin/create-
administrator, that creates an administrator e-person with information entered from standard input. This is
generally used only once when a DSpace system is initially installed, to create an initial administrator who can then
use the Web administration UI to further set up the system. This script does not check for authorization, since it is
typically run before there are any e-people to authorize! Since it must be run as a command-line tool on the server
machine, generally this shouldn't cause a problem. A possibility is to have the script only operate when there are no
e-people in the system already, though in general, someone with access to command-line scripts on your server is
probably in a position to do what they want anyway!

The DCType class is similar to the org.dspace.content.BitstreamFormat class. It represents an
entry in the Dublin Core type registry, that is, a particular element and qualifier, or unqualified element.
It is in the administer package because it is only generally required when manipulating the registry
itself. Elements and qualifiers are specified as literals in org.dspace.content.Item methods and the
org.dspace.content.DCValue class. Only administrators may modify the Dublin Core type registry.

DSpace System Documentation:
Business Logic Layer

151

The org.dspace.administer.RegistryLoader class contains methods for initialising the Dublin Core type
registry and bitstream format registry with entries in an XML file. Typically this is executed via the command line
during the build process (see build.xml in the source.) To see examples of the XML formats, see the files in
config/registries in the source directory. There is no XML schema, they aren't validated strictly when loaded
in.

10.6. E-person/Group Manager
DSpace keeps track of registered users with the org.dspace.eperson.EPerson class. The class has methods
to create and manipulate an EPerson such as get and set methods for first and last names, email, and password.
(Actually, there is no getPassword() method--an MD5 hash of the password is stored, and can only be verified
with the checkPassword() method.) There are find methods to find an EPerson by email (which is assumed to
be unique,) or to find all EPeople in the system.

The EPerson object should probably be reworked to allow for easy expansion; the current EPerson object tracks
pretty much only what MIT was interested in tracking - first and last names, email, phone. The access methods are
hardcoded and should probably be replaced with methods to access arbitrary name/value pairs for institutions that wish
to customize what EPerson information is stored.

Groups are simply lists of EPerson objects. Other than membership, Group objects have only one other attribute:
a name. Group names must be unique, so we have adopted naming conventions where the role of the group is
its name, such as COLLECTION_100_ADD. Groups add and remove EPerson objects with addMember() and
removeMember() methods. One important thing to know about groups is that they store their membership in
memory until the update() method is called - so when modifying a group's membership don't forget to invoke
update() or your changes will be lost! Since group membership is used heavily by the authorization system a fast
isMember() method is also provided.

Another kind of Group is also implemented in DSpace--special Groups. The Context object for each session carries
around a List of Group IDs that the user is also a member of--currently the MITUser Group ID is added to the list of
a user's special groups if certain IP address or certificate criteria are met.

10.7. Authorization
The primary classes are:

org.dspace.authorize.AuthorizeManager does all authorization, checking policies against Groups

org.dspace.authorize.ResourcePolicy defines all allowable actions for an object

org.dspace.eperson.Group all policies are defined in terms of EPerson Groups

The authorization system is based on the classic 'police state' model of security; no action is allowed unless it is
expressed in a policy. The policies are attached to resources (hence the name ResourcePolicy,) and detail who can
perform that action. The resource can be any of the DSpace object types, listed in org.dspace.core.Constants
(BITSTREAM, ITEM, COLLECTION, etc.) The 'who' is made up of EPerson groups. The actions are also in
Constants.java (READ, WRITE, ADD, etc.) The only non-obvious actions are ADD and REMOVE, which are
authorizations for container objects. To be able to create an Item, you must have ADD permission in a Collection, which
contains Items. (Communities, Collections, Items, and Bundles are all container objects.)

Currently most of the read policy checking is done with items--communities and collections are assumed to be openly
readable, but items and their bitstreams are checked. Separate policy checks for items and their bitstreams enables
policies that allow publicly readable items, but parts of their content may be restricted to certain groups.

The AuthorizeManager class' authorizeAction(Context, object, action) is the primary source
of all authorization in the system. It gets a list of all of the ResourcePolicies in the system that match the object and

DSpace System Documentation:
Business Logic Layer

152

action. It then iterates through the policies, extracting the EPerson Group from each policy, and checks to see if the
EPersonID from the Context is a member of any of those groups. If all of the policies are queried and no permission is
found, then an AuthorizeException is thrown. An authorizeAction() method is also supplied that returns
a boolean for applications that require higher performance.

ResourcePolicies are very simple, and there are quite a lot of them. Each can only list a single group, a single action,
and a single object. So each object will likely have several policies, and if multiple groups share permissions for actions
on an object, each group will get its own policy. (It's a good thing they're small.)

10.7.1. Special Groups
All users are assumed to be part of the public group (ID=0.) DSpace admins (ID=1) are automatically part of all groups,
much like super-users in the Unix OS. The Context object also carries around a List of special groups, which are also
first checked for membership. These special groups are used at MIT to indicate membership in the MIT community,
something that is very difficult to enumerate in the database! When a user logs in with an MIT certificate or with an
MIT IP address, the login code adds this MIT user group to the user's Context.

10.7.2. Miscellaneous Authorization Notes
Where do items get their read policies? From the their collection's read policy. There once was a separate item read
default policy in each collection, and perhaps there will be again since it appears that administrators are notoriously
bad at defining collection's read policies. There is also code in place to enable policies that are timed--have a start and
end date. However, the admin tools to enable these sorts of policies have not been written.

10.8. Handle Manager/Handle Plugin
The org.dspace.handle package contains two classes; HandleManager is used to create and look up Handles,
and HandlePlugin is used to expose and resolve DSpace Handles for the outside world via the CNRI Handle
Server code.

Handles are stored internally in the handle database table in the form:

1721.123/4567

Typically when they are used outside of the system they are displayed in either URI or "URL proxy" forms:

hdl:1721.123/4567
http://hdl.handle.net/1721.123/4567

It is the responsibility of the caller to extract the basic form from whichever displayed form is used.

The handle table maps these Handles to resource type/resource ID pairs, where resource type is a value from
org.dspace.core.Constants and resource ID is the internal identifier (database primary key) of the object.
This allows Handles to be assigned to any type of object in the system, though as explained in the functional overview
[functional.html#handles], only communities, collections and items are presently assigned Handles.

HandleManager contains static methods for:

• Creating a Handle

• Finding the Handle for a DSpaceObject, though this is usually only invoked by the object itself, since
DSpaceObject has a getHandle method

functional.html#handles
functional.html#handles

DSpace System Documentation:
Business Logic Layer

153

• Retrieving the DSpaceObject identified by a particular Handle

• Obtaining displayable forms of the Handle (URI or "proxy URL").

HandlePlugin is a simple implementation of the Handle Server's net.handle.hdllib.HandleStorage
interface. It only implements the basic Handle retrieval methods, which get information from the handle database
table. The CNRI Handle Server is configured to use this plug-in via its config.dct file.

Note that since the Handle server runs as a separate JVM to the DSpace Web applications, it uses a
separate 'Log4J' configuration, since Log4J does not support multiple JVMs using the same daily rolling logs.
This alternative configuration is held as a template in /dspace/config/templates/log4j-handle-
plugin.properties, written to /dspace/config/log4j-handle-plugin.properties by the
install-configs script. The /dspace/bin/start-handle-server script passes in the appropriate
command line parameters so that the Handle server uses this configuration.

10.9. Search
DSpace's search code is a simple API which currently wraps the Lucene search engine. The first half of the search task
is indexing, and org.dspace.search.DSIndexer is the indexing class, which contains indexContent()
which if passed an Item, Community, or Collection, will add that content's fields to the index. The
methods unIndexContent() and reIndexContent() remove and update content's index information. The
DSIndexer class also has a main() method which will rebuild the index completely. This is invoked by the
dspace/bin/index-all script. The intent was for the main() method to be invoked on a regular basis to avoid
index corruption, but we have had no problem with that so far.

Which fields are indexed by DSIndexer? These fields are defined in dspace.cfg in the section "Fields to index for
search" as name-value-pairs. The name must be unique in the form search.index.i (i is an arbitrary positive number).
The value on the right side has a unique value again, which can be referenced in search-form (e.g. title, author). Then
comes the metadata element which is indexed. '*' is a wildcard which includes all subelements. For example:

search.index.4 = keyword:dc.subject.*

tells the indexer to create a keyword index containing all dc.subject element values. Since the wildcard ('*') character
was used in place of a qualifier, all subject metadata fields will be indexed (e.g. dc.subject.other, dc.subject.lcsh, etc)

By default, the fields shown in the Indexed Fields section below are indexed. These are hardcoded in the
DSIndexer class. If any search.index.i items are specified in dspace.cfg these are used rather than these hardcoded
fields.

The query class DSQuery contains the three flavors of doQuery() methods--one searches the DSpace site, and
the other two restrict searches to Collections and Communities. The results from a query are returned as three lists of
handles; each list represents a type of result. One list is a list of Items with matches, and the other two are Collections
and Communities that match. This separation allows the UI to handle the types of results gracefully without resolving
all of the handles first to see what kind of content the handle points to. The DSQuery class also has a main() method
for debugging via command-line searches.

10.9.1. Our Lucene Implementation
Currently we have our own Analyzer and Tokenizer classes (DSAnalyzer and DSTokenizer) to customize our
indexing. They invoke the stemming and stop word features within Lucene. We create an IndexReader for each
query, which we now realize isn't the most efficient use of resources - we seem to run out of filehandles on really heavy
loads. (A wildcard query can open many filehandles!) Since Lucene is thread-safe, a better future implementation
would be to have a single Lucene IndexReader shared by all queries, and then is invalidated and re-opened when the
index changes. Future API growth could include relevance scores (Lucene generates them, but we ignore them,) and
abstractions for more advanced search concepts such as booleans.

DSpace System Documentation:
Business Logic Layer

154

10.9.2. Indexed Fields
The DSIndexer class shipped with DSpace indexes the Dublin Core metadata in the following way:

Search Field Taken from Dublin Core Fields

Authors contributor.*

creator.*

description.statementofresponsibility

Titles title.*

Keywords subject.*

Abstracts description.abstract

description.tableofcontents

Series relation.ispartofseries

MIME types format.mimetype

Sponsors description.sponsorship

Identifiers identifier.*

10.9.3. Harvesting API
The org.dspace.search package also provides a 'harvesting' API. This allows callers to extract information
about items modified within a particular timeframe, and within a particular scope (all of DSpace, or a community or
collection.) Currently this is used by the Open Archives Initiative metadata harvesting protocol application, and the
e-mail subscription code.

The Harvest.harvest is invoked with the required scope and start and end dates. Either date can be omitted. The
dates should be in the ISO8601, UTC time zone format used elsewhere in the DSpace system.

HarvestedItemInfo objects are returned. These objects are simple containers with basic information about the
items falling within the given scope and date range. Depending on parameters passed to the harvest method, the
containers and item fields may have been filled out with the IDs of communities and collections containing an
item, and the corresponding Item object respectively. Electing not to have these fields filled out means the harvest
operation executes considerable faster.

In case it is required, Harvest also offers a method for creating a single HarvestedItemInfo object, which
might make things easier for the caller.

10.10. Browse API
The browse API maintains indices of dates, authors, titles and subjects, and allows callers to extract parts of these:

Title
Values of the Dublin Core element title (unqualified) are indexed. These are sorted in a case-insensitive fashion,
with any leading article removed. For example:

DSpace System Documentation:
Business Logic Layer

155

The DSpace System

Appears under 'D' rather than 'T'.

Author
Values of the contributor (any qualifier or unqualified) element are indexed. Since contributor values
typically are in the form 'last name, first name', a simple case-insensitive alphanumeric sort is used which orders
authors in last name order.

Note that this is an index of authors, and not items by author. If four items have the same author, that author will
appear in the index only once. Hence, the index of authors may be greater or smaller than the index of titles; items
often have more than one author, though the same author may have authored several items.

The author indexing in the browse API does have limitations:

• Ideally, a name that appears as an author for more than one item would appear in the author index only once.
For example, 'Doe, John' may be the author of tens of items. However, in practice, author's names often appear
in slightly differently forms, for example:

Doe, John
Doe, John Stewart
Doe, John S.

Currently, the above three names would all appear as separate entries in the author index even though they may
refer to the same author. In order for an author of several papers to be correctly appear once in the index, each
item must specify exactly the same form of their name, which doesn't always happen in practice.

• Another issue is that two authors may have the same name, even within a single institution. If this is the case
they may appear as one author in the index.

These issues are typically resolved in libraries with authority control records, in which are kept a 'preferred'
form of the author's name, with extra information (such as date of birth/death) in order to distinguish between
authors of the same name. Maintaining such records is a huge task with many issues, particularly when metadata
is received from faculty directly rather than trained library cataloguers. For these reasons, DSpace does not yet
feature 'authority control' functionality.

Date of Issue
Items are indexed by date of issue. This may be different from the date that an item appeared in DSpace; many
items may have been originally published elsewhere beforehand. The Dublin Core field used is date.issued. The
ordering of this index may be reversed so 'earliest first' and 'most recent first' orderings are possible.

Note that the index is of items by date, as opposed to an index of dates. If 30 items have the same issue date (say
2002), then those 30 items all appear in the index adjacent to each other, as opposed to a single 2002 entry.

Since dates in DSpace Dublin Core are in ISO8601, all in the UTC time zone, a simple alphanumeric sort is
sufficient to sort by date, including dealing with varying granularities of date reasonably. For example:

2001-12-10
2002
2002-04
2002-04-05
2002-04-09T15:34:12Z
2002-04-09T19:21:12Z
2002-04-10

DSpace System Documentation:
Business Logic Layer

156

Date Accessioned
In order to determine which items most recently appeared, rather than using the date of issue, an item's accession
date is used. This is the Dublin Core field date.accessioned. In other aspects this index is identical to the date
of issue index.

Items by a Particular Author
The browse API can perform is to extract items by a particular author. They do not have to be primary author
of an item for that item to be extracted. You can specify a scope, too; that is, you can ask for items by author X
in collection Y, for example.

This particular flavour of browse is slightly simpler than the others. You cannot presently specify a particular
subset of results to be returned. The API call will simply return all of the items by a particular author within a
certain scope.

Note that the author of the item must exactly match the author passed in to the API; see the explanation about the
caveats of the author index browsing to see why this is the case.

Subject
Values of the Dublin Core element subject (both unqualified and with any qualifier) are indexed. These are sorted
in a case-insensitive fashion.

10.10.1. Using the API
The API is generally invoked by creating a BrowseScope object, and setting the parameters for which particular part
of an index you want to extract. This is then passed to the relevent Browse method call, which returns a BrowseInfo
object which contains the results of the operation. The parameters set in the BrowseScope object are:

• How many entries from the index you want

• Whether you only want entries from a particular community or collection, or from the whole of DSpace

• Which part of the index to start from (called the focus of the browse). If you don't specify this, the start of the
index is used

• How many entries to include before the focus entry

To illustrate, here is an example:

• We want 7 entries in total

• We want entries from collection x

• We want the focus to be 'Really'

• We want 2 entries included before the focus.

The results of invoking Browse.getItemsByTitle with the above parameters might look like this:

 Rabble-Rousing Rabbis From Sardinia
 Reality TV: Love It or Hate It?
FOCUS> The Really Exciting Research Video
 Recreational Housework Addicts: Please Visit My House
 Regional Television Variation Studies
 Revenue Streams

DSpace System Documentation:
Business Logic Layer

157

 Ridiculous Example Titles: I'm Out of Ideas

Note that in the case of title and date browses, Item objects are returned as opposed to actual titles. In these cases,
you can specify the 'focus' to be a specific item, or a partial or full literal value. In the case of a literal value, if no
entry in the index matches exactly, the closest match is used as the focus. It's quite reasonable to specify a focus of
a single letter, for example.

Being able to specify a specific item to start at is particularly important with dates, since many items may have the
save issue date. Say 30 items in a collection have the issue date 2002. To be able to page through the index 20 items
at a time, you need to be able to specify exactly which item's 2002 is the focus of the browse, otherwise each time you
invoked the browse code, the results would start at the first item with the issue date 2002.

Author browses return String objects with the actual author names. You can only specify the focus as a full or
partial literal String.

Another important point to note is that presently, the browse indices contain metadata for all items in the main archive,
regardless of authorization policies. This means that all items in the archive will appear to all users when browsing. Of
course, should the user attempt to access a non-public item, the usual authorization mechanism will apply. Whether
this approach is ideal is under review; implementing the browse API such that the results retrieved reflect a user's level
of authorization may be possible, but rather tricky.

10.10.2. Index Maintenance
The browse API contains calls to add and remove items from the index, and to regenerate the indices from scratch. In
general the content management API invokes the necessary browse API calls to keep the browse indices in sync with
what is in the archive, so most applications will not need to invoke those methods.

If the browse index becomes inconsistent for some reason, the InitializeBrowse class is a command line tool
(generally invoked using the /dspace/bin/index-all shell script) that causes the indices to be regenerated
from scratch.

10.10.3. Caveats
Presently, the browse API is not tremendously efficient. 'Indexing' takes the form of simply extracting the relevant
Dublin Core value, normalising it (lower-casing and removing any leading article in the case of titles), and inserting
that normalized value with the corresponding item ID in the appropriate browse database table. Database views of this
table include collection and community IDs for browse operations with a limited scope. When a browse operation is
performed, a simple SELECT query is performed, along the lines of:

SELECT item_id FROM ItemsByTitle ORDER BY sort_title OFFSET 40 LIMIT
 20

There are two main drawbacks to this: Firstly, LIMIT and OFFSET are PostgreSQL-specific keywords. Secondly,
the database is still actually performing dynamic sorting of the titles, so the browse code as it stands will not scale
particularly well. The code does cache BrowseInfo objects, so that common browse operations are performed
quickly, but this is not an ideal solution.

10.11. History Recorder
The purpose of the history subsystem is to capture a time-based record of significant changes in DSpace, in a manner
suitable for later refactoring or repurposing. Note that the history data is not expected to provide current information
about the archive; it simply records what has happened in the past.

DSpace System Documentation:
Business Logic Layer

158

The Harmony project [http://www.metadata.net/harmony/] describes a simple and powerful approach for modeling
temporal data. The DSpace history framework adopts this model. The Harmony model is used by the serialization
mechanism (and ultimately by agents who interpret the serializations); users of the History API need not be aware of
it. The content management API handles invocations of the history system. Users of the DSpace public API do not
generally need to use the history API.

When anything of archival interest occurs in DSpace, the saveHistory method of the HistoryManager is
invoked. The parameters contains a reference to anything of archival interest. Upon reception of the object, it serializes
the state of all archive objects referred to by it, and creates Harmony-style objects and associations to describe the
relationships between the objects. (A simple example is given below). Note that each archive object must have a unique
identifier to allow linkage between discrete events; this is discussed under "Unique IDs" below.

The serializations (including the Harmony objects and associations) are persisted as files in the /dspace/
history (or other configured) directory. The history and historystate tables contain simple indicies into
the serializations in the file system.

10.11.1. Archival Events
The following events are significant enough to warrant history records:

• Communities

• create/modify/delete

• add/remove Collection to/from Community

• Collections

• create/modify/delete

• add/remove Item to/from Collection

• Items

• create/modify/delete

• assign Handle to Item

• modify Item contents (Bundles, Bitstreams, metadata fields, etc)

• EPerson

• create/modify/delete

• Workflow

• Workflow completed

10.11.2. Serializations
The serialization of an archival object consists of:

• Its instance fields (ie, non-static, non-transient fields)

• The serializations of associated objects (or references to these serializations).

http://www.metadata.net/harmony/
http://www.metadata.net/harmony/

DSpace System Documentation:
Business Logic Layer

159

10.11.3. Unique Ids
To be able to trace the history of an object, it is essential that the object have a unique identifier. Since not all objects
in the system have Handles, the unique identifiers are only weakly tied to the Handle system. Instead, the identifier
consists of:

• an identifer for the project

• a site id (using the handle prefix)

• an RDBMS-based id for objects

10.11.4. Storage
When an archive object is serialized, an object ID and MD5 checksum are recorded. When another object is serialized,
the checksum for the serialization is matched against existing checksums for that object. If the checksum already exists,
the object is not stored; a reference to the object is used instead. Note that since none of the serializations are deleted,
reference counting is unnecessary.

The history data is not initially stored in a queryable form. Two simple RDBMS tables give basic indications of what
is stored, and where. The history table is an index of serializations with checksums and dates. The history_id
column corresponds to the file in which a serialization is stored. For example, if the history ID is 123456, it will be
stored in the file:

/dspace/history/00/12/34/123456

The table also contains the date the serialization was written and the MD5 checksum of the serialization.

The historystate table is supposed to indicate the most recent serialization of any given object.

10.11.5. Example
An item is submitted to a collection via bulk upload. When (and if) the item is eventually added to the collection, the
history method is called, with references to the item, its collection, the e-person who performed the bulk upload, and
some indication of the fact that it was submitted via a bulk upload.

When called, the HistoryManager does the following: It creates the following new resources (all with unique ids):

• An event

• A state

• An action

It also generates the following relationships:

event --atTime--> time
event --hasOutput--> state
Item --inState--> state
state --contains--> Item
action --creates--> Item
event --hasAction--> action
action --usesTool--> DSpace Upload

DSpace System Documentation:
Business Logic Layer

160

action --hasAgent--> User

The history component serializes the state of all archival objects involved (in this case, the item, the e-person, and
the collection). It creates entries in the history database tables which associate the archival objects with the generated
serializations.

10.11.6. Caveats
This history system is a largely untested experiment. It also needs further documentation. There have been no serious
efforts to determine whether the information written by the history system, either to files or the database tables, is
accurate. In particular, the historystate table does not seem to be correctly written.

10.12. Checksum checker
The architecture of the checker is documented in the package javadocs, run cd [dspace-source]/
dspace;mvn javadoc:javadoc, and look in [dspace-source]dspace-api/target/site/
apidocs/index.html.

161

Chapter 11. Customizing and
Configuring Submission User Interface
This page explains various customization and configuration options that are available within DSpace for the Item
Submission user interface.

11.1. Understanding the Submission
Configuration File
The [dspace]/config/item-submission.xml contains the submission configurations for both the DSpace
JSP user interface (JSPUI) or the DSpace XML user interface (XMLUI or Manakin). This configuration file contains
detailed documentation within the file itself, which should help you better understand how to best utilize it.

11.1.1. The Structure of item-submission.xml

 <item-submission> <!-- Where submission processes are
 mapped to specific Collections --> <submission-map> <name-map
 collection-handle="default" submission-name="traditional" /> ...
 </submission-map> <!-- Where "steps" which are used across many
 submission processes can be defined in a single place. They can then
 be referred to by ID later. --> <step-definitions> <step
 id="collection">
 <processing-class>org.dspace.submit.step.SelectCollectionStep</process
;/processing-class> <workflow-editable>false</workflow-editable>
 </step> ... </step-definitions> <!-- Where actual submission
 processes are defined and given names. Each <submission-process> has
 many <step> nodes which are in the order that the steps should be
 in.--> <submission-definitions> <submission-process name="traditional">
 ... <!-- Step definitions appear here! --> </submission-process> ...
 </submission-definitions> </item-submission>

Because this file is in XML format, you should be familiar with XML before editing this file. By default, this file
contains the "traditional" Item Submission Process for DSpace, which consists of the following Steps (in this order):

Select Collection -> Initial Questions -> Describe -> Upload -> Verify -> License
-> Complete

If you would like to customize the steps used or the ordering of the steps, you can do so within the <submission-
definition> section of the item-submission.xml .

In addition, you may also specify different Submission Processes for different DSpace Collections. This can be done
in the <submission-map> section. The item-submission.xml file itself documents the syntax required to
perform these configuration changes.

Customizing and Configuring
Submission User Interface

162

11.1.2. Defining Steps (<step>) within the item-
submission.xml

This section describes how Steps of the Submission Process are defined within the item-submission.xml.

Where to place your <step> definitions

<step> definitions can appear in one of two places within the item-submission.xml configuration file.

1. Within the <step-definitions> section

• This is for globally defined <step> definitions (i.e. steps which are used in multiple <submission-
process> definitions). Steps defined in this section must define a unique id which can be used to reference
this step.

• For example:

 <step-definitions> <step id="custom-step"> ...
 </step> ... </step-definitions>

• The above step definition could then be referenced from within a <submission-process> as simply <step
id="custom-step"/>

2. Within a specific <submission-process> definition

• This is for steps which are specific to a single <submission-process> definition.

• For example:

 <submission-process> <step> ... </step>
 </submission-process>

The ordering of <step> definitions matters!

The ordering of the <step> tags within a <submission-process> definition directly corresponds to the order
in which those steps will appear!

For example, the following defines a Submission Process where the License step directly precedes the Initial Questions
step (more information about the structure of the information under each <step> tag can be found in the section on
Structure of the <step> Definition below):

 <submission-process> <!--Step 1 will be to Sign off on
 the License--> <step> <heading>submit.progressbar.license</heading>
 <processing-class>org.dspace.submit.step.LicenseStep</processing-class

Customizing and Configuring
Submission User Interface

163

ing-class>
 <jspui-binding>org.dspace.app.webui.submit.step.JSPLicenseStep</jspui-
t;/jspui-binding>
 <xmlui-binding>org.dspace.app.xmlui.aspect.submission.submit.LicenseSt
enseStep</xmlui-binding> <workflow-editable>false</workflow-editable>
 </step> <!--Step 2 will be to Ask Initial Questions--> <step>
 <heading>submit.progressbar.initial-questions</heading>
 <processing-class>org.dspace.submit.step.InitialQuestionsStep</process
;/processing-class>
 <jspui-binding>org.dspace.app.webui.submit.step.JSPInitialQuestionsSte
onsStep</jspui-binding>
 <xmlui-binding>org.dspace.app.xmlui.aspect.submission.submit.InitialQu
tialQuestionsStep</xmlui-binding>
 <workflow-editable>true</workflow-editable> </step> ...[other
 steps]... </submission-process>

Structure of the <step> Definition

The same <step> definition is used by both the DSpace JSP user interface (JSPUI) an the DSpace XML user interface
(XMLUI or Manakin). Therefore, you will notice each <step> definition contains information specific to each of these
two interfaces.

The structure of the <step> Definition is as follows:

 <step> <heading>submit.progressbar.describe</heading>
 <processing-class>org.dspace.submit.step.DescribeStep</processing-clas
sing-class>
 <jspui-binding>org.dspace.app.webui.submit.step.JSPDescribeStep</jspui
lt;/jspui-binding>
 <xmlui-binding>org.dspace.app.xmlui.aspect.submission.submit.DescribeS
cribeStep</xmlui-binding> <workflow-editable>true</workflow-editable>
 </step>

Each step contains the following elements. The required elements are so marked:

heading
Partial I18N key (defined in Messages.properties for JSPUI or messages.xml for XMLUI) which
corresponds to the text that should be displayed in the submission Progress Bar for this step. This partial I18N key
is prefixed within either the Messages.properties or messages.xml file, depending on the interface you are using.
Therefore, to find the actual key, you will need to search for the partial key with the following prefix:

• XMLUI: prefix is xmlui.Submission. (e.g. "xmlui.Submission.submit.progressbar.describe" for
'Describe' step)

• JSPUI: prefix is jsp. (e.g. "jsp.submit.progressbar.describe" for 'Describe' step)
The 'heading' need not be defined if the step should not appear in the progress bar (e.g. steps which perform
automated processing, i.e. non-interactive, should not appear in the progress bar).

Customizing and Configuring
Submission User Interface

164

processing-class (Required)
Full Java path to the Processing Class for this Step. This Processing Class must perform the primary processing
of any information gathered in this step, for both the XMLUI and JSPUI. All valid step processing classes must
extend the abstract `org.dspace.submit.AbstractProcessingStep` class (or alternatively, extend
one of the pre-existing step processing classes in org.dspace.submit.step.*)

jspui-binding
Full Java path of the JSPUI "binding" class for this Step. This "binding" class should initialize and call the
appropriate JSPs to display the step's user interface. A valid JSPUI "binding" class must extend the abstract
`org.dspace.app.webui.submit.JSPStep` class. This property need not be defined if you are using
the XMLUI interface, or for steps which only perform automated processing, i.e. non-interactive steps.

xmlui-binding
Full Java path of the XMLUI "binding" class for this Step. This "binding" class should generate the Manakin XML
(DRI document) necessary to generate the step's user interface. A valid XMLUI "binding" class must extend the
abstract `org.dspace.app.xmlui.submission.AbstractSubmissionStep` class. This property
need not be defined if you are using the JSPUI interface, or for steps which only perform automated processing,
i.e. non-interactive steps.

workflow-editable
Defines whether or not this step can be edited during the Edit Metadata process with the DSpace approval/rejection
workflow process. Possible values include true and false. If undefined, defaults to true (which means that
workflow reviewers would be allowed to edit information gathered during that step).

11.2. Reordering/Removing Submission Steps
The removal of existing steps and reordering of existing steps is a relatively easy process!

Reordering steps

1. Locate the <submission-process> tag which defines the Submission Process that you are using. If you are
unsure which Submission Process you are using, it's likely the one with name="traditional", since this is
the traditional DSpace submission process.

2. Reorder the <step> tags within that <submission-process> tag. Be sure to move the entire<step> tag
(i.e. everything between and including the opening <step> and closing </step> tags).

• Hint #1: The <step> defining the Review/Verify step only allows the user to review information from steps
which appear before it. So, it's likely you'd want this to appear as one of your last few steps

• Hint #2: If you are using it, the <step> defining the Initial Questions step should always appear before the
Upload or Describe steps since it asks questions which help to set up those later steps.

Removing one or more steps

1. Locate the <submission-process> tag which defines the Submission Process that you are using. If you are
unsure which Submission Process you are using, it's likely the one with name="traditional", since this is
the traditional DSpace submission process.

2. Comment out (i.e. surround with <!-- and -->) the <step> tags which you want to remove from that
<submission-process> tag. Be sure to comment out the entire<step> tag (i.e. everything between and
including the opening <step> and closing </step> tags).

• Hint #1: You cannot remove the Select a Collection step, as an DSpace Item cannot exist without belonging to
a Collection.

Customizing and Configuring
Submission User Interface

165

• Hint #2: If you decide to remove the <step> defining the Initial Questions step, you should be aware that this
may affect your Describe and Upload steps! The Initial Questions step asks questions which help to initialize
these later steps. If you decide to remove the Initial Questions step you may wish to create a custom, automated
step which will provide default answers for the questions asked!

11.3. Assigning a custom Submission Process
to a Collection
Assigning a custom submission process to a Collection in DSpace involves working with the submission-map
section of the item-submission.xml. For a review of the structure of the item-submission.xml see the
section above on Understanding the Submission Configuration File.

Each name-map element within submission-map associates a collection with the name of a submission definition.
Its collection-handle attribute is the Handle of the collection. Its submission-name attribute is the
submission definition name, which must match the name attribute of a submission-process element (in the
submission-definitions section of item-submission.xml.

For example, the following fragment shows how the collection with handle "12345.6789/42" is assigned the "custom"
submission process:

 <submission-map>
 <name-map collection-handle=" 12345.6789/42" submission-name="
 custom" />
 ...
 </submission-map>

 <submission-definitions>
 <submission-process name="
 custom">
 ...
 </submission-definitions>

It's a good idea to keep the definition of the default name-map from the example input-forms.xml so there
is always a default for collections which do not have a custom form set.

11.3.1. Getting A Collection's Handle

You will need the handle of a collection in order to assign it a custom form set. To discover the handle, go to the
"Communities & Collections" page under "Browse" in the left-hand menu on your DSpace home page. Then, find the
link to your collection. It should look something like:

 http://myhost.my.edu/dspace/handle/
 12345.6789/42

The underlined part of the URL is the handle. It should look familiar to any DSpace administrator. That is what goes
in the collection-handle attribute of your name-map element.

Customizing and Configuring
Submission User Interface

166

11.4. Custom Metadata-entry Pages for
Submission

11.4.1. Introduction
This section explains how to customize the Web forms used by submitters and editors to enter and modify the metadata
for a new item. These metadata web forms are controlled by the Describe step within the Submission Process. However,
they are also configurable via their own XML configuration file (input-forms.xml).

You can customize the "default" metadata forms used by all collections, and also create alternate sets of metadata
forms and assign them to specific collections. In creating custom metadata forms, you can choose:

• The number of metadata-entry pages.

• Which fields appear on each page, and their sequence.

• Labels, prompts, and other text associated with each field.

• List of available choices for each menu-driven field.

N.B.The cosmetic and ergonomic details of metadata entry fields remain the same as the fixed metadata pages in
previous DSpace releases, and can only be altered by modifying the appropriate stylesheet and JSP pages.

All of the custom metadata-entry forms for a DSpace instance are controlled by a single XML file, input-
forms.xml, in the config subdirectory under the DSpace home. DSpace comes with a sample configuration that
implements the traditional metadata-entry forms, which also serves as a well-documented example. The rest of this
section explains how to create your own sets of custom forms.

11.4.2. Describing Custom Metadata Forms
The description of a set of pages through which submitters enter their metadata is called a form (although it is actually
a set of forms, in the HTML sense of the term). A form is identified by a unique symbolic name. In the XML structure,
the form is broken down into a series of pages: each of these represents a separate Web page for collecting metadata
elements.

To set up one of your DSpace collections with customized submission forms, first you make an entry in the form-
map. This is effectively a table that relates a collection to a form set, by connecting the collection's Handle to the
form name. Collections are identified by handle because their names are mutable and not necessarily unique, while
handles are unique and persistent.

A special map entry, for the collection handle "default", defines the default form set. It applies to all collections
which are not explicitly mentioned in the map. In the example XML this form set is named traditional (for the
"traditional" DSpace user interface) but it could be named anything.

11.4.3. The Structure of input-forms.xml
The XML configuration file has a single top-level element, input-forms, which contains three elements in a
specific order. The outline is as follows:

<input-forms>

 <-- Map of Collections to Form Sets -->

Customizing and Configuring
Submission User Interface

167

 <form-map>
 <name-map collection-handle="default" form-name="traditional"
 />
 ...
 </form-map>

 <-- Form Set Definitions -->
 <form-definitions>
 <form name="traditional">
 ...
 </form-definitions>

 <-- Name/Value Pairs used within Multiple Choice Widgets
 -->
 <form-value-pairs>
 <value-pairs value-pairs-name="common_iso_languages"
 dc-term="language_iso">
 ...
 </form-value-pairs>
</input-forms>

Adding a Collection Map

Each name-map element within form-map associates a collection with the name of a form set. Its collection-
handle attribute is the Handle of the collection, and its form-name attribute is the form set name, which must
match the name attribute of a form element.

For example, the following fragment shows how the collection with handle "12345.6789/42" is attached to the
"TechRpt" form set:

 <form-map>
 <name-map collection-handle=" 12345.6789/42" form-name=" TechRpt"
 />
 ...
 </form-map>

 <form-definitions>
 <form name="
 TechRept">
 ...
 </form-definitions>

It's a good idea to keep the definition of the default name-map from the example input-forms.xml so there
is always a default for collections which do not have a custom form set.

Getting A Collection's Handle

You will need the handle of a collection in order to assign it a custom form set. To discover the handle, go to the
"Communities & Collections" page under "Browse" in the left-hand menu on your DSpace home page. Then, find the
link to your collection. It should look something like:

 http://myhost.my.edu/dspace/handle/
 12345.6789/42

Customizing and Configuring
Submission User Interface

168

The underlined part of the URL is the handle. It should look familiar to any DSpace administrator. That is what goes
in the collection-handle attribute of your name-map element.

Adding a Form Set

You can add a new form set by creating a new form element within the form-definitions element. It has one
attribute, name, which as seen above must match the value of the name-map for the collections it is to be used for.

Forms and Pages

The content of the form is a sequence of page elements. Each of these corresponds to a Web page of forms for
entering metadata elements, presented in sequence between the initial "Describe" page and the final "Verify" page
(which presents a summary of all the metadata collected).

A form must contain at least one and at most six pages. They are presented in the order they appear in the XML. Each
page element must include a number attribute, that should be its sequence number, e.g.

<page number="1">

The page element, in turn, contains a sequence of field elements. Each field defines an interactive dialog where
the submitter enters one of the Dublin Core metadata items.

Composition of a Field

Each field contains the following elements, in the order indicated. The required sub-elements are so marked:

dc-schema (Required)
Name of metadata schema employed, e.g. dc for Dublin Core. This value must match the value of the schema
element defined in dublin-core-types.xml

dc-element (Required)
Name of the Dublin Core element entered in this field, e.g. contributor.

dc-qualifier
Qualifier of the Dublin Core element entered in this field, e.g. when the field is contributor.advisor the
value of this element would be advisor. Leaving this out means the input is for an unqualified DC element.

repeatable
Value is true when multiple values of this field are allowed, false otherwise. When you mark a field repeatable,
the UI servlet will add a control to let the user ask for more fields to enter additional values. Intended to be used
for arbitrarily-repeating fields such as subject keywords, when it is impossible to know in advance how many
input boxes to provide.

label (Required)
Text to display as the label of this field, describing what to enter, e.g. "Your Advisor's Name".

input-type (Required)
Defines the kind of interactive widget to put in the form to collect the Dublin Core value. Content must be one
of the following keywords:

• onebox -- A single text-entry box.

• twobox -- A pair of simple text-entry boxes, used for repeatable values such as the DC subject item. Note:
The 'twobox' input type is rendered the same as a 'onebox' in the XML-UI, but both allow for ease of adding
multiple values.

Customizing and Configuring
Submission User Interface

169

• textarea -- Large block of text that can be entered on multiple lines, e.g. for an abstract.

• name -- Personal name, with separate fields for family name and first name. When saved they are appended
in the format 'LastName, FirstName'

• date -- Calendar date. When required, demands that at least the year be entered.

• series -- Series/Report name and number. Separate fields are provided for series name and series number, but
they are appended (with a semicolon between) when saved.

• dropdown -- Choose value(s) from a "drop-down" menu list. Note: You must also include a value for the
value-pairs-name attribute to specify a list of menu entries from which to choose. Use this to make a
choice from a restricted set of options, such as for the language item.

• qualdrop_value -- Enter a "qualified value", which includes both a qualifier from a drop-down menu and
a free-text value. Used to enter items like alternate identifers and codes for a submitted item, e.g. the DC
identifier field. Note: As for the dropdown type, you must include the value-pairs-name attribute
to specify a menu choice list.

• list -- Choose value(s) from a checkbox or radio button list. If the repeatable attribute is set to true, a list
of checkboxes is displayed. If the repeatable attribute is set to false, a list of radio buttons is displayed.
Note: You must also include a value for the value-pairs-name attribute to specify a list of values from
which to choose.

hint (Required)
Content is the text that will appear as a "hint", or instructions, next to the input fields. Can be left empty, but it
must be present.

required
When this element is included with any content, it marks the field as a required input. If the user tries to leave the
page without entering a value for this field, that text is displayed as a warning message. For example,

<required>You must enter a title.</required> Note that leaving the required
element empty will not mark a field as required, e.g.:

<required></required>

visibility
When this optional element is included with a value, it restricts the visibility of the field to the scope defined by
that value. If the element is missing or empty, the field is visible in all scopes. Currently supported scopes are:

• workflow : the field will only be visible in the workflow stages of submission. This is good for hiding difficult
fields for users, such as subject classifications, thereby easing the use of the submission system.

• submit : the field will only be visible in the initial submission, and not in the workflow stages.
For example:

<visibility>workflow</visibility>

Note that it is considered a configuration error to limit a field's scope while also requiring it - an exception will
be generated when this combination is detected.

Look at the example input-forms.xml and experiment with a a trial custom form to learn this specification
language thoroughly. It is a very simple way to express the layout of data-entry forms, but the only way to learn all
its subtleties is to use it.

For the use of controlled vocabularies see the Configuring Controlled Vocabularies
[configure.html#controlledvocabulary] section.

configure.html#controlledvocabulary
configure.html#controlledvocabulary

Customizing and Configuring
Submission User Interface

170

Automatically Elided Fields

You may notice that some fields are automatically skipped when a custom form page is displayed, depending on the
kind of item being submitted. This is because the DSpace user-interface engine skips Dublin Core fields which are not
needed, according to the initial description of the item. For example, if the user indicates there are no alternate titles
on the first "Describe" page (the one with a few checkboxes), the input for the title.alternative DC element
is automatically elided, even on custom submission pages.

When a user initiates a submission, DSpace first displays what we'll call the "initial-questions page". By default, it
contains three questions with check-boxes:

1. The item has more than one title, e.g. a translated title

Controls title.alternative field.

2. The item has been published or publicly distributed before

Controls DC fields:

• date.issued

• publisher

• identifier.citation

3. The item consists of more than one file

Does not affect any metadata input fields.

The answers to the first two questions control whether inputs for certain of the DC metadata fields will displayed,
even if they are defined as fields in a custom page. Conversely, if the metadata fields controlled by a checkbox are not
mentioned in the custom form, the checkbox is elided from the initial page to avoid confusing or misleading the user.

The two relevant checkbox entries are "The item has more than one title, e.g. a translated title", and "The item has
been published or publicly distributed before". The checkbox for multiple titles trigger the display of the field with
dc-element equal to 'title' and dc-qualifier equal to 'alternative'. If the controlling collection's form set does not contain
this field, then the multiple titles question will not appear on the initial questions page.

Adding Value-Pairs

Finally, your custom form description needs to define the "value pairs" for any fields with input types that refer to
them. Do this by adding a value-pairs element to the contents of form-value-pairs. It has the following
required attributes:

• value-pairs-name -- Name by which an input-type refers to this list.

• dc-term -- Qualified Dublin Core field for which this choice list is selecting a value.

Each value-pairs element contains a sequence of pair sub-elements, each of which in turn contains two
elements:

• displayed-value -- Name shown (on the web page) for the menu entry.

• stored-value -- Value stored in the DC element when this entry is chosen.

Unlike the HTML select tag, there is no way to indicate one of the entries should be the default, so the first entry
is always the default choice.

Customizing and Configuring
Submission User Interface

171

Example

Here is a menu of types of common identifiers:

 <value-pairs value-pairs-name="common_identifiers"
 dc-term="identifier">
 <pair>
 <displayed-value>Gov't Doc
 #</displayed-value>
 <stored-value>govdoc</stored-value>
 </pair>
 <pair>
 <displayed-value>URI</displayed-value>
 <stored-value>uri</stored-value>
 </pair>
 <pair>
 <displayed-value>ISBN</displayed-value>
 <stored-value>isbn</stored-value>
 </pair>
 </value-pairs>

It generates the following HTML, which results in the menu widget below. (Note that there is no way to indicate a
default choice in the custom input XML, so it cannot generate the HTML SELECTED attribute to mark one of the
options as a pre-selected default.)

<select name="identifier_qualifier_0">
<option VALUE="govdoc">Gov't Doc
 #</option>
<option VALUE="uri">URI</option>
<option VALUE="isbn">ISBN</option>
</select>

Identifiers:Gov't Doc #URIISBN

11.4.4. Deploying Your Custom Forms
The DSpace web application only reads your custom form definitions when it starts up, so it is important to remember:

You must always restart Tomcat (or whatever servlet container you are using) for changes made
to the input-forms.xml file take effect.

Any mistake in the syntax or semantics of the form definitions, such as poorly formed XML or a reference to a
nonexistent field name, will cause a fatal error in the DSpace UI. The exception message (at the top of the stack trace
in the dspace.log file) usually has a concise and helpful explanation of what went wrong. Don't forget to stop and
restart the servlet container before testing your fix to a bug.

11.5. Configuring the File Upload step
The Upload step in the DSpace submission process has two configuration options which can be set with your
[dspace]/config/dspace.cfg configuration file. They are as follows:

Customizing and Configuring
Submission User Interface

172

• upload.max - The maximum size of a file (in bytes) that can be uploaded from the JSPUI (not applicable for the
XMLUI). It defaults to 536870912 bytes (512MB). You may set this to -1 to disable any file size limitation.

• Note: Increasing this value or setting to -1 does not guarantee that DSpace will be able to successfully upload
larger files via the web, as large uploads depend on many other factors including bandwidth, web server settings,
internet connection speed, etc.

• webui.submit.upload.required - Whether or not all users are required to upload a file when they submit
an item to DSpace. It defaults to 'true'. When set to 'false' users will see an option to skip the upload step when
they submit a new item.

11.6. Creating new Submission Steps
First, a brief warning: Creating a new Submission Step requires some Java knowledge, and is therefore recommended
to be undertaken by a Java programmer whenever possible

That being said, at a higher level, creating a new Submission Step requires the following (in this relative order):

1. (Required) Create a new Step Processing class

• This class must extend the abstract org.dspace.submit.AbstractProcessingStep class and
implement all methods defined by that abstract class.

• This class should be built in such a way that it can process the input gathered from either the XMLUI or JSPUI
interface.

2. (For steps using JSPUI) Create the JSPs to display the user interface. Create a new JSPUI "binding" class to initialize
and call these JSPs.

3. • Your JSPUI "binding" class must extend the abstract class org.dspace.app.webui.submit.JSPStep
and implement all methods defined there. It's recommended to use one of the classes in
org.dspace.app.webui.submit.step.* as a reference.

• Any JSPs created should be loaded by calling the showJSP() method of the
org.dspace.app.webui.submit.JSPStepManager class

• If this step gathers information to be reviewed, you must also create a Review JSP which will display a read-only
view of all data gathered during this step. The path to this JSP must be returned by your getReviewJSP() method.
You will find examples of Review JSPs (named similar to review-[step].jsp) in the JSP submit/
directory.

4. (For steps using XMLUI) Create an XMLUI "binding" Step Transformer which will generate the DRI XML which
Manakin requires.

• The Step Transformer must extend and implement all necessary methods within the abstract class
org.dspace.app.xmlui.submission.AbstractSubmissionStep

• It is useful to use the existing classes in org.dspace.app.xmlui.submission.submit.* as references

5. (Required) Add a valid Step Definition to the item-submission.xml configuration file.

• This may also require that you add an I18N (Internationalization) key for this step's heading. See the sections
on Configuring Multilingual Support for JSPUI [configure.html#jspui-multilingual] or Configuring Multilingual
Support for XMLUI [configure.html#xmlui-multilingual] for more details.

configure.html#jspui-multilingual
configure.html#jspui-multilingual
configure.html#xmlui-multilingual
configure.html#xmlui-multilingual
configure.html#xmlui-multilingual

Customizing and Configuring
Submission User Interface

173

• For more information on <step> definitions within the item-submission.xml, see the section above on
Defining Steps (<step>) within the item-submission.xml.

11.6.1. Creating a Non-Interactive Step
Non-interactive steps are ones that have no user interface and only perform backend processing. You may find a need
to create non-interactive steps which perform further processing of previously entered information.

To create a non-interactive step, do the following:

1. Create the required Step Processing class, which extends the abstract
org.dspace.submit.AbstractProcessingStep class. In this class add any processing which this step
will perform.

2. Add your non-interactive step to your item-submission.xml at the place where you wish this step to be called
during the submission process. For example, if you want it to be called immediately after the existing 'Upload File'
step, then place its configuration immediately after the configuration for that 'Upload File' step. The configuration
should look similar to the following:

 <step>
 <processing-class>org.dspace.submit.step.MyNonInteractveStep</processi
/processing-class> <workflow-editable>false</workflow-editable>
 </step>

Note: Non-interactive steps will not appear in the Progress Bar! Therefore, your submitters will not even know they
are there. However, because they are not visible to your users, you should make sure that your non-interactive step
does not take a large amount of time to finish its processing and return control to the next step (otherwise there will
be a visible time delay in the user interface).

174

Chapter 12. docbook/
DRISchemaReference.html
/* Code style */ div.element-example pre { border: 1px dashed black; overflow-x: hidden; background:
rgb(240,240,240); margin: 0px; padding: 10px;}

175

Chapter 13. DRI Schema Reference
Digital Repository Interface (DRI) is a schema that governs the structure of a Manakin DSpace page when encoded as
an XML Document. It determines what elements can be present in the Document and the relationship of those elements
to each other. This reference document explains the purpose of DRI, provides a broad architectural overview, and
explains common design patterns. The appendix includes a complete reference for elements used in the DRI Schema,
a graphical representation of the element hierarchy, and a quick reference table of elements and attributes.

13.1. Introduction
This manual describes the Digital Repository Interface (DRI) as it applies to the DSpace digital repository and XMLUI
Manakin based interface. DSpace XML UI is a comprehensive user interface system. It is centralized and generic,
allowing it to be applied to all DSpace pages, effectively replacing the JSP-based interface system. Its ability to apply
specific styles to arbitrarily large sets of DSpace pages significantly eases the task of adapting the DSpace look and
feel to that of the adopting institution. This also allows for several levels of branding, lending institutional credibility
to the repository and collections.

Manakin, the second version of DSpace XML UI, consists of several components, written using Java, XML, and
XSL, and is implemented in Cocoon [http://cocoon.apache.org/]. Central to the interface is the XML Document, which
is a semantic representation of a DSpace page. In Manakin, the XML Document adheres to a schema called the
Digital Repository Interface (DRI) Schema, which was developed in conjunction with Manakin and is the subject of
this guide. For the remainder of this guide, the terms XML Document, DRI Document, and Document will be used
interchangeably.

This reference document explains the purpose of DRI, provides a broad architectural overview, and explains common
design patterns. The appendix includes a complete reference for elements used in the DRI Schema, a graphical
representation of the element hierarchy, and a quick reference table of elements and attributes.

13.1.1. The Purpose of DRI
DRI is a schema that governs the structure of the XML Document. It determines the elements that can be present
in the Document and the relationship of those elements to each other. Since all Manakin components produce XML
Documents that adhere to the DRI schema, The XML Document serves as the abstraction layer. Two such components,
Themes and Aspects, are essential to the workings of Manakin and are described briefly in this manual.

13.1.2. The Development of DRI
The DRI schema was developed for use in Manakin. The choice to develop our own schema rather than adapt an
existing one came after a careful analysis of the schema's purpose as well as the lessons learned from earlier attempts
at customizing the DSpace interface. Since every DSpace page in Manakin exists as an XML Document at some point
in the process, the schema describing that Document had to be able to structurally represent all content, metadata
and relationships between different parts of a DSpace page. It had to be precise enough to avoid losing any structural
information, and yet generic enough to allow Themes a certain degree of freedom in expressing that information in
a readable format.

Popular schemas such as XHTML suffer from the problem of not relating elements together explicitly. For example,
if a heading precedes a paragraph, the heading is related to the paragraph not because it is encoded as such but
because it happens to precede it. When these structures are attempted to be translated into formats where these types
of relationships are explicit, the translation becomes tedious, and potentially problematic. More structured schemas,
like TEI or Docbook, are domain specific (much like DRI itself) and therefore not suitable for our purposes.

We also decided that the schema should natively support a metadata standard for encoding artifacts. Rather than
encoding artifact metadata in structural elements, like tables or lists, the schema would include artifacts as objects

http://cocoon.apache.org/
http://cocoon.apache.org/

DRI Schema Reference

176

encoded in a particular standard. The inclusion of metadata in native format would enable the Theme to choose the
best method to render the artifact for display without being tied to a particular structure.

Ultimately, we chose to develop our own schema. We have constructed the DRI schema by incorporating
other standards when appropriate, such as Cocoon's i18n schema [http://cocoon.apache.org/2.1/userdocs/
i18nTransformer.html] for internationalization, DCMI's Dublin Core [http://dublincore.org/], and the Library of
Congress's METS schema [http://www.loc.gov/standards/mets/]. The design of structural elements was derived
primarily from TEI [http://www.tei-c.org/index.xml], with some of the design patterns borrowed from other existing
standards such as DocBook and XHTML. While the structural elements were designed to be easily translated into
XHTML, they preserve the semantic relationships for use in more expressive languages.

13.2. DRI in Manakin
The general process for handling a request in DSpace XML UI consists of two parts. The first part builds the XML
Document, and the second part stylizes that Document for output. In Manakin, the two parts are not discrete and
instead wrapped within two processes: Content Generation, which builds an XML representation of the page, and Style
Application, which stylizes the resulting Document. Content Generation is performed by Aspect chaining, while Style
Application is performed by a Theme.

13.2.1. Themes
A Theme is a collection of XSL stylesheets and supporting files like images, CSS styles, translations, and help
documents. The XSL stylesheets are applied to the DRI Document to covert it into a readable format and give it
structure and basic visual formatting in that format. The supporting files are used to provide the page with a specific
look and feel, insert images and other media, translate the content, and perform other tasks. The currently used output
format is XHTML and the supporting files are generally limited to CSS, images, and JavaScript. More output formats,
like PDF or SVG, may be added in the future.

A DSpace installation running Manakin may have several Themes associated with it. When applied to a page, a Theme
determines most of the pageís look and feel. Different themes can be applied to different sets of DSpace pages allowing
for both variety of styles between sets of pages and consistency within those sets. The xmlui.xconf configuration
file determines which Themes are applied to which DSpace pages (see the Configuration and Customization chapter
[configure.html#xmlui-configure] for more information on installing and configuring themes). Themes may be
configured to apply to all pages of specific type, like browse-by-title, to all pages of a one particular community or
collection or sets of communities and collections, and to any mix of the two. They can also be configured to apply
to a singe arbitrary page or handle.

13.2.2. Aspect Chains
Manakin Aspects are arrangements of Cocoon components (transformers, actions, matchers, etc) that implement a new
set of coupled features for the system. These Aspects are chained together to form all the features of Manakin. Five
Aspects exist in the default installation of Manakin, each handling a particular set of features of DSpace, and more
can be added to implement extra features. All Aspects take a DRI Document as input and generate one as output. This
allows Aspects to be linked together to form an Aspect chain. Each Aspect in the chain takes a DRI Document as
input, adds its own functionality, and passes the modified Document to the next Aspect in the chain.

13.3. Common Design Patterns
There are several design patterns used consistently within the DRI schema. This section identifies the need for and
describes the implementation of these patterns. Three patterns are discussed: language and internationalization issues,
standard attribute triplet (id, n, and rend), and the use of structure-oriented markup.

http://cocoon.apache.org/2.1/userdocs/i18nTransformer.html
http://cocoon.apache.org/2.1/userdocs/i18nTransformer.html
http://cocoon.apache.org/2.1/userdocs/i18nTransformer.html
http://dublincore.org/
http://dublincore.org/
http://www.loc.gov/standards/mets/
http://www.loc.gov/standards/mets/
http://www.loc.gov/standards/mets/
http://www.tei-c.org/index.xml
http://www.tei-c.org/index.xml
configure.html#xmlui-configure
configure.html#xmlui-configure

DRI Schema Reference

177

13.3.1. Localization and Internationalization
Internationalization is a very important component of the DRI system. It allows content to be offered in other languages
based on user's locale and conditioned upon availability of translations, as well as present dates and currency in a
localized manner. There are two types of translated content: content stored and displayed by DSpace itself, and content
introduced by the DRI styling process in the XSL transformations. Both types are handled by Cocoon's i18n transformer
without regard to their origin.

When the Content Generation process produces a DRI Document, some of the textual content may be marked up with
i18n elements to signify that translations are available for that content. During the Style Application process, the
Theme can also introduce new textual content, marking it up with i18n tags. As a result, after the Theme's XSL
templates are applied to the DRI Document, the final output consists of a DSpace page marked up in the chosen display
format (like XHTML) with i18n elements from both DSpace and XSL content. This final document is sent through
Cocoon's i18n transformer that translates the marked up text.

13.3.2. Standard attribute triplet
Many elements in the DRI system (all top-level containers, character classes, and many others) contain one or several
of the three standard attributes: id, n, and rend. The id and n attributes can be required or optional based on the elementís
purpose, while the rend attribute is always optional. The first two are used for identification purposes, while the third
is used as a display hint issued to the styling step.

Identification is important because it allows elements to be separated from their peers for sorting, special case
rendering, and other tasks. The first attribute, id, is the global identifier and it is unique to the entire document. Any
element that contains an id attribute can thus be uniquely referenced by it. The id attribute of an element can be either
assigned explicitly, or generated from the Java Class Path of the originating object if no name is given. While all
elements that can be uniquely identified can carry the id attribute, only those that are independent on their context are
required to do so. For example, tables are required to have an id since they retain meaning regardless of their location
in the document, while table rows and cells can omit the attribute since their meaning depends on the parent element.

The name attribute n is simply the name assigned to the element, and it is used to distinguish an element from its
immediate peers. In the example of a particular list, all items in that list will have different names to distinguish them
from each other. Other lists in the document, however, can also contain items whose names will be different from
each other, but identical to those in the first list. The n attribute of an element is therefore unique only in the scope
of that elementís parent and is used mostly for sorting purposes and special rendering of a certain class of elements,
like, for example, all first items in lists, or all items named "browse". The n attribute follows the same rules as id when
determining whether or not it is required for a given element.

The last attribute in the standard triplet is rend. Unlike id and n, the rend attribute can consist of several space delimited
values and is optional for all elements that can contain it. Its purpose is to provide a rendering hint from the middle
layer component to the styling theme. How that hint is interpreted and whether it is used at all when provided, is
completely up the theme. There are several cases, however, where the content of the rend attribute is outlined in detail
and its use is encouraged. Those cases are the emphasis element hi, the division element div, and the list element.
Please refer to the Element Reference for more detail on these elements.

13.3.3. Structure-oriented markup
The final design pattern is the use of structure-oriented markup for content carried by the XML Document. Once
generated by Cocoon, the Document contains two major types of information: metadata about the repository and its
contents, and the actual content of the page to be displayed. A complete overview of metadata and content markup and
their relationship to each other is given in the next section. An important thing to note here, however, is that the markup
of the content is oriented towards explicitly stating structural relationships between the elements rather than focusing
on the presentational aspects. This makes the markup used by the Document more similar to TEI or Docbook rather
than HTML. For this reason, XSL templates are used by the themes to convert structural DRI markup to XHTML. Even

DRI Schema Reference

178

then, an attempt is made to create XHTML as structural as possible, leaving presentation entirely to CSS. This allows
the XML Document to be generic enough to represent any DSpace page without dictating how it should be rendered.

13.4. Schema Overview
The DRI XML Document consists of the root element document and three top-level elements that contain two major
types of elements. The three top-level containers are meta, body, and options. The two types of elements they
contain are metadata and content, carrying metadata about the page and the contents of the page, respectively. Figure
1 depicts the relationship between these six components.

Figure 1: The two content types across three major divisions of a DRI page. The document element is the root for
all DRI pages and contains all other elements. It bears only one attribute, version, that contains the version number of
the DRI system and the schema used to validate the produced document. At the time of writing the working version
number is "1.1".

The meta element is a the top-level element under document and contains all metadata information about the page,
the user that requested it, and the repository it is used with. It contains no structural elements, instead being the only
container of metadata elements in a DRI Document. The metadata stored by the meta element is broken up into three
major groups: userMeta, pageMeta, and objectMeta, each storing metadata information about their respective
component. Please refer to the reference entries for more information about these elements.

The options element is another top-level element that contains all navigation and action options available to the
user. The options are stored as items in list elements, broken up by the type of action they perform. The five types
of actions are: browsing, search, language selection, actions that are always available, and actions that are context
dependent. The two action types also contain sub-lists that contain actions available to users of varying degrees of
access to the system. The options element contains no metadata elements and can only make use of a small set of
structural elements, namely the list element and its children.

The last major top-level element is the body element. It contains all structural elements in a DRI Document, including
the lists used by the options element. Structural elements are used to build a generic representation of a DSpace page.
Any DSpace page can be represented with a combination of the structural elements, which will in turn be transformed
by the XSL templates into another format. This is the core mechanism that allows DSpace XML UI to apply uniform
templates and styling rules to all DSpace pages and is the fundamental difference from the JSP approach currently
used by DSpace.

The body element directly contains only one type of element: div. The div element serves as a major division of
content and any number of them can be contained by the body. Additionally, divisions are recursive, allowing divs

DRI Schema Reference

179

to contain other divs. It is within these elements that all other structural elements are contained. Those elements
include tables, paragraph elements p, and lists, as well as their various children elements. At the lower levels of this
hierarchy lie the character container elements. These elements, namely paragraphs p, table cells, lists items, and
the emphasis element hi, contain the textual content of a DSpace page, optionally modified with links, figures, and
emphasis. If the division within which the character class is contained is tagged as interactive (via the interactive
attribute), those elements can also contain interactive form fields. Divisions tagged as interactive must also provide
method and action attributes for its fields to use.

Figure 2: All the elements in the DRI schema. Note: This image is out-of-date, it does not reflect the changes between
1.0 and 1.1 such as reference and referenceSet.

13.5. Merging of DRI Documents
Having described the structure of the DRI Document, as well as its function in Manakin's Aspect chains, we now turn
our attention to the one last detail of their use: merging two Documents into one. There are several situations where
the need to merge two documents arises. In Manakin, for example, every Aspect is responsible for adding different
functionality to a DSpace page. Since every instance of a page has to be a complete DRI Document, each Aspect is
faced with the task of merging the Document it generated with the ones generated (and merged into one Document)
by previously executed Aspects. For this reason rules exist that describe which elements can be merged together and
what happens to their data and child elements in the process.

When merging two DRI Documents, one is considered to be the main document, and the other a feeder document
that is added in. The three top level containers (meta, body and options) of both documents are then individually

DRI Schema Reference

180

analyzed and merged. In the case of the options and meta elements, the children tags are taken individually as
well and treated differently from their siblings.

The body elements are the easiest to merge: their respective div children are preserved along with their ordering
and are grouped together under one element. Thus, the new body tag will contain all the divs of the main document
followed by all the divs of the feeder. However, if two divs have the same n and rend attributes (and in case of
an interactive div the same action and method attributes as well), those divs will be merged into one. The resulting
div will bear the id, n, and rend attributes of the main document's div and contain all the divs of the main document
followed by all the divs of the feeder. This process continues recursively until all the divs have been merged. It
should be noted that two divisions with separate pagination rules cannot be merged together.

Merging the options elements is somewhat different. First, list elements under options of both documents
are compared with each other. Those unique to either document are simply added under the new options element,
just like divs under body. In case of duplicates, that is list elements that belong to both documents and have the
same n attribute, the two lists will be merged into one. The new list element will consist of the main documentís
head element, followed label-item pairs from the main document, and then finally the label-item pairs of the
feeder, provided they are different from those of the main.

Finally, the meta elements are merged much like the elements under body. The three children of meta - userMeta,
pageMeta, and objectMeta - are individually merged, adding the contents of the feeder after the contents of the
main.

13.6. Version Changes
The DRI schema will continue to evolve overtime as the needs of interface design require. The version attribute on the
document will indicate which version of the schema the document conforms to. At the time Manakin was incorporated
into the standard distribution of DSpac the current version was "1.1", however earlier versions of the Manakin interface
may use "1.0".

13.6.1. Changes from 1.0 to 1.1
There were major structural changes between these two version numbers. Several elements were removed from the
schema:includeSet, include, objectMeta, and object. Originally all metadata for objects were included
in-line with the DRI document, this proved to have several problems and has been removed in version 1.1 of the DRI
schema. Instead of including metadata in-line, external references to the metadata is included. Thus, a reference
element has been added along with referenceSet. These new elements operate like their counterparts in the
previous version except refrencing metadata contained on the objectMeta element they reference metadata in
external files. The repository and repositoryMeta elements were alse modified in a similar mannor removing
in-line metadata and refrencing external metadata documents.

13.7. Element Reference
Element Attributes (if required,

noted)
Required

BODY

cols

id

n

rend

role

cell

rows

DRI Schema Reference

181

action required for interactive
behavior

behaviorSensitivFields

currentPage

firstItemIndex

id required

interactive

itemsTotal

lastItemIndex

method required for interactive

n required

nextPage

pagesTotal

pageURLMask

pagination

previousPage

rend

div

DOCUMENT version required

disabled

id required

n required

rend

required

field

type required

rend

sourcefigure

target

id

nhead

rend

help

hi rend required

instance

id

nitem

rend

id

nlabel

rend

DRI Schema Reference

182

id required

n required

rend
list

type

META

element required

languagemetadata

qualifier

OPTIONS

id

np

rend

pageMeta

cols

maxlength

multiple

operations

rows

params

size

url required

repositoryID requiredreference

type

id required

n required

orderBy

rend

referenceSet

type required

repositoryID required
repository

url required

repositoryMeta

id

n

rend
row

role required

cols required

id required

n required

rend

table

rows required

DRI Schema Reference

183

rend
trail

target

userMeta authenticated required

optionSelected

optionValuevalue

type required

xref target required

13.7.1. BODY

Top-Level Container

The body element is the main container for all content displayed to the user. It contains any number of div elements
that group content into interactive and display blocks.

Parent

document

Children

div

(any)

Attributes

None

<document version=1.0>
 <meta> ... </meta>
 <body>
 <div n="division-example1"
 id="XMLExample.div.division-example1">
 ...
 </div>
 <div n="division-example2" id="XMLExample.div.division-example2"
 interactive="yes" action="www.DRItest.com"
 method="post">
 ...
 </div>
 ...
 </body>
 <options> ... </options>
</document>

13.7.2. cell

DRI Schema Reference

184

Rich Text Container

Structural Element

The cell element contained in a row of a table carries content for that table. It is a character container, just like
p, item, and hi, and its primary purpose is to display textual data, possibly enhanced with hyperlinks, emphasized
blocks of text, images and form fields. Every cell can be annotated with a role (the most common being ìheaderî
and ìdataî) and can stretch across any number of rows and columns. Since cells cannot exist outside their container,
row, their id attribute is optional.

Parent

row

Children

hi

(any)

xref

(any)

figure

(any)

field

(any)

Attributes

cols
optional

The number of columns the cell spans.

id
optional

A unique identifier of the element.

n
optional

A local identifier used to differentiate the element from its siblings.

rend
optional

A rendering hint used to override the default display of the element.

DRI Schema Reference

185

role
optional

An optional attribute to override the containing rowís role settings.

rows
optional

The number of rows the cell spans.

<table n="table-example" id="XMLExample.table.table-example" rows="2"
 cols="3">
 <row role="head">
 <cell cols="2">Data Label One and Two</cell> <cell>Data Label
 Three</cell>
 ...
 </row>
 <row>
 <cell> Value One </cell> <cell> Value Two </cell> <cell> Value
 Three </cell>
 ...
 </row>
 ...
</table>

13.7.3. div

Structural Element

The div element represents a major section of content and can contain a wide variety of structural elements to present
that content to the user. It can contain paragraphs, tables, and lists, as well as references to artifact information stored in
artifactMeta, repositoryMeta, collections, and communities. The div element is also recursive,
allowing it to be further divided into other divs. Divs can be of two types: interactive and static. The two types are
set by the use of the interactive attribute and differ in their ability to contain interactive content. Children elements of
divs tagged as interactive can contain form fields, with the action and method attributes of the div serving to resolve
those fields.

Parent

body

div

Children

head

(zero or one)

pagination

DRI Schema Reference

186

(zero or one)

table

(any)

p

(any)

referenceSet

(any)

list

(any)

div

(any)

Attributes

action
required for interactive

The form action attribute determines where the form information should be sent for processing.

behavior
optional for interactive

The acceptable behavior options that may be used on this form. The only possible value defined at this time is
ìajaxî which means that the form may be submitted multiple times for each individual field in this form. Note that
if the form is submitted multiple times it is best for the behaviorSensitiveFields to be updated as well.

behaviorSensitiveFields
optional for interactive

A space separated list of field names that are sensitive to behavior. These fields must be updated each time a form
is submitted with out a complete refresh of the page (i.e. ajax).

currentPage
optional

For paginated divs, the currentPage attribute indicates the index of the page currently displayed for this div.

firstItemIndex
optional

For paginated divs, the firstItemIndex attribute indicates the index of the first item included in this div.

id
required

DRI Schema Reference

187

A unique identifier of the element.

interactive
optional

Accepted values are ìyesî, ìnoî. This attribute determines whether the div is interactive or static. Interactive divs
must provide action and method and can contain field elements.

itemsTotal
optional

For paginated divs, the itemsTotal attribute indicates how many items exit across all paginated divs.

lastItemIndex
optional

For paginated divs, the lastItemIndex attribute indicates the index of the last item included in this div.

method
required for interactive

Accepted values are ìgetî, ìpostî, and ìmultipartî. Determines the method used to pass gathered field values to the
handler specified by the action attribute. The multipart method should be used for uploading files.

n
required

A local identifier used to differentiate the element from its siblings.

nextPage
optional

For paginated divs the nextPage attribute points to the URL of the next page of the div, if it exists.

pagesTotal
optional

For paginated divs, the pagesTotal attribute indicates how many pages the paginated divs spans.

pageURLMask
optional

For paginated divs, the pageURLMask attribute contains the mask of a url to a particular page within the paginated
set. The destination pageís number should replace the {pageNum} string in the URL mask to generate a full URL
to that page.

pagination
optional

Accepted values are ìsimpleî, ìmaskedî. This attribute determines whether the div is spread over several pages.
Simple paginated divs must provide previousPage, nextPage, itemsTotal, firstItemIndex, lastItemIndex attributes.
Masked paginated divs must provide currentPage, pagesTotal, pageURLMask, itemsTotal, firstItemIndex,
lastItemIndex attributes.

previousPage
optional

For paginated divs the previousPage attribute points to the URL of the previous page of the div, if it exists.

DRI Schema Reference

188

rend
optional

A rendering hint used to override the default display of the element. In the case of the div tag, it is also encouraged
to label it as either ìprimaryî or ìsecondaryî. Divs marked as primary contain content, while secondary divs contain
auxiliary information or supporting fields.

<body>
 <div n="division-example"
 id="XMLExample.div.division-example">
 <head> Example Division </head>
 <p> This example shows the use of divisions. </p>
 <table ...>
 ...
 </table>
 <referenceSet ...>
 ...
 </referenceSet>
 <list ...>
 ...
 </list>
 <div n="sub-division-example"
 id="XMLExample.div.sub-division-example">
 <p> Divisions may be nested </p>
 ...
 </div>
 ...
 </div>
 ...
</body>

13.7.4. DOCUMENT

Document Root

The document element is the root container of an XML UI document. All other elements are contained within it either
directly or indirectly. The only attribute it carries is the version of the Schema to which it conforms.

Parent

none

Children

meta

(one)

body

(one)

DRI Schema Reference

189

options

(one)

Attributes

version
required

Version number of the schema this document adheres to. At the time of writing the only valid version number is
ì1.0î. Future iterations of this schema may increment the version number.

 <document
 version="1.0">
 <meta>
 ...
 </meta>
 <body>
 ...
 </body>
 <options>
 ...
 </options>
 </document>

13.7.5. field

Text Container

Structural Element

The field element is a container for all information necessary to create a form field. The required type attribute
determines the type of the field, while the children tags carry the information on how to build it. Fields can only occur
in divisions tagged as "interactive".

Parent

cell

p

hi

item

Children

params

DRI Schema Reference

190

(one)

help

(zero or one)

error

(any)

option

(any - only with the select type)

value

(any - only available on fields of type: select, checkbox, or radio)

field

(one or more - only with the composite type)

valueSet

(any)

Attributes

disabled
optional

Accepted values are ìyesî, ìnoî. Determines whether the field allows user input. Rendering of disabled fields may
vary with implementation and display media.

id
required

A unique identifier for a field element.

n
required

A non-unique local identifier used to differentiate the element from its siblings within an interactive division. This
is the name of the field use when data is submitted back to the server.

rend
optional

A rendering hint used to override the default display of the element.

required
optional

DRI Schema Reference

191

Accepted values are ìyesî, ìnoî. Determines whether the field is a required component of the form and thus cannot
be left blank.

type
required

A required attribute to specify the type of value. Accepted types are:

button
A button input control that when activated by the user will submit the form, including all the fields, back to
the server for processing.

checkbox
A boolean input control which may be toggled by the user. A checkbox may have several fields which share
the same name and each of those fields may be toggled independently. This is distinct from a radio button
where only one field may be toggled.

file
An input control that allows the user to select files to be submitted with the form. Note that a form which
uses a file field must use the multipart method.

hidden
An input control that is not rendered on the screen and hidden from the user.

password
A single-line text input control where the input text is rendered in such a way as to hide the characters from
the user.

radio
A boolean input control which may be toggled by the user. Multiple radio button fields may share the same
name. When this occurs only one field may be selected to be true. This is distinct from a checkbox where
multiple fields may be toggled.

select
A menu input control which allows the user to select from a list of available options.

text
A single-line text input control.

textarea
A multi-line text input control.

composite
A composite input control combines several input controls into a single field. The only fields that may be
combined together are: checkbox, password, select, text, and textarea. When fields are combined together
they can posses multiple combined values.

<p>
 <hi> ... </hi>
 <xref> ... </xref>
 <figure> ... </figure>
 ...
 <field id="XMLExample.field.name" n="name" type="text"
 required="yes">
 <params size="16" maxlength="32"/>

DRI Schema Reference

192

 <help>Some help text with <i18n>localized
 content</i18n>.</help>
 <value type="raw">Default value goes
 here</value>
 </field>
</p>

13.7.6. figure

Text Container

Structural Element

The figure element is used to embed a reference to an image or a graphic element. It can be mixed freely with text,
and any text within the tag itself will be used as an alternative descriptor or a caption.

Parent

cell

p

hi

item

Children

none

Attributes

rend
optional

A rendering hint used to override the default display of the element.

source
optional

The source for the image, using either a URL or a pre-defined XML entity.

target
optional

A target for an image used as a link, using either a URL or an id of an existing element as a destination.

<p>
 <hi> ... </hi>
 ...

DRI Schema Reference

193

 <xref> ... </xref>
 ...
 <field> ... </field>
 ...
 <figure source="www.example.com/fig1"> This is a static image.
 </figure>
 <figure source="www.example.com/fig1"
 target="www.example.net">
 This image is also a link.
 </figure>
 ...
</p>

13.7.7. head

Text Container

Structural Element

The head element is primarily used as a label associated with its parent element. The rendering is determined by its
parent tag, but can be overridden by the rend attribute. Since there can only be one head element associated with a
particular tag, the n attribute is not needed, and the id attribute is optional.

Parent

div

table

list

referenceSet

Children

none

Attributes

id
optional

A unique identifier of the element

n
optional

A local identifier used to differentiate the element from its siblings

rend
optional

DRI Schema Reference

194

A rendering hint used to override the default display of the element.

<div ...>
 <head> This is a simple header associated with its div element.
 </head>
 <div ...>
 <head rend="green"> This header will be green.
 </head>
 <p>
 <head> A header with <i18n>localized content</i18n>.
 </head>
 ...
 </p>
 </div>
 <table ...>
 <head> ...
 </head>
 ...
 </table>
 <list ...>
 <head> ...
 </head>
 ...
 </list>
 ...
</body>

13.7.8. help

Text Container

Structural Element

The optional help element is used to supply help instructions in plain text and is normally contained by the field
element. The method used to render the help text in the target markup is up to the theme.

Parent

field

Children

none

Attributes

None

<p>
 <hi> ... </hi>
 ...

DRI Schema Reference

195

 <xref> ... </xref>
 ...
 <figure> ... </figure>
 ...
 <field id="XMLExample.field.name" n="name" type="text"
 required="yes">
 <params size="16" maxlength="32" />
 <help>Some help text with <i18n>localized
 content</i18n>.</help>
 </field>
 ...
</p>

13.7.9. hi

Rich Text Container

Structural Element

The hi element is used for emphasis of text and occurs inside character containers like p and list item. It can be
mixed freely with text, and any text within the tag itself will be emphasized in a manner specified by the required rend
attribute. Additionally, hi element is the only text container component that is a rich text container itself, meaning it
can contain other tags in addition to plain text. This allows it to contain other text containers, including other hi tags.

Parent

cell

p

item

hi

Children

hi

(any)

xref

(any)

figure

(any)

DRI Schema Reference

196

field

(any)

Attributes

rend
required

A required attribute used to specify the exact type of emphasis to apply to the contained text. Common values
include but are not limited to "bold", "italic", "underline", and "emph".

<p>
 This text is normal, while <hi rend="bold">this text is bold and
 this text is <hi rend="italic">bold and
 italic.</hi></hi>
</p>

13.7.10. instance

Structural Element

The instance element contains the value associated with a form fieldís multiple instances. Fields encoded as an
instance should also include the values of each instance as a hidden field. The hidden field should be appended with
the index number for the instance. Thus if the field is "firstName" each instance would be named "firstName_1",
"firstName_2", "firstName_3", etc...

Parent

field

Children

value

Attributes

None listed yet.

Example needed.

13.7.11. item

Rich Text Container

Structural Element

The item element is a rich text container used to display textual data in a list. As a rich text container it can contain
hyperlinks, emphasized blocks of text, images and form fields in addition to plain text.

DRI Schema Reference

197

The item element can be associated with a label that directly precedes it. The Schema requires that if one item in
a list has an associated label, then all other items must have one as well. This mitigates the problem of loose
connections between elements that is commonly encountered in XHTML, since every item in particular list has the
same structure.

Parent

list

Children

hi

(any)

xref

(any)

figure

(any)

field

(any)

list

(any)

Attributes

id
optional

A unique identifier of the element

n
optional

A non-unique local identifier used to differentiate the element from its siblings

rend
optional

A rendering hint used to override the default display of the element.

<list n="list-example"
 id="XMLExample.list.list-example">
 <head> Example List </head>
 <item> This is the first item

DRI Schema Reference

198

 </item>
 <item> This is the second item with <hi ...>highlighted text</hi>,
 <xref ...> a link</xref> and an <figure
 ...>image</figure>.</item>
 ...
 <list n="list-example2"
 id="XMLExample.list.list-example2">
 <head> Example List </head>
 <label>ITEM ONE:</label>
 <item> This is the first item
 </item>
 <label>ITEM TWO:</label>
 <item> This is the second item with <hi ...>highlighted
 text</hi>, <xref ...> a link</xref> and an <figure
 ...>image</figure>.</item>
 <label>ITEM THREE:</label>
 <item> This is the third item with a <field ...> ... </field>
 </item>
 ...
 </list>
 <item> This is the third item in the list
 </item>
 ...
</list>

13.7.12. label

Text Container

Structural Element

The label element is associated with an item and annotates that item with a number, a textual description of some
sort, or a simple bullet.

Parent

item

Children

none

Attributes

id
optional

A unique identifier of the element

n
optional

A local identifier used to differentiate the element from its siblings

DRI Schema Reference

199

rend
optional

An optional rend attribute provides a hint on how the label should be rendered, independent of its type.

<list n="list-example"
 id="XMLExample.list.list-example">
 <head>Example List</head>
 <label>1</label>
 <item> This is the first item </item>
 <label>2</label>
 <item> This is the second item with <hi ...>highlighted text</hi>,
 <xref ...> a link</xref> and an <figure
 ...>image</figure>.</item>
 ...
 <list n="list-example2"
 id="XMLExample.list.list-example2">
 <head>Example Sublist</head>
 <label>ITEM
 ONE:</label>
 <item> This is the first item </item>
 <label>ITEM
 TWO:</label>
 <item> This is the second item with <hi ...>highlighted
 text</hi>, <xref ...> a link</xref> and an <figure
 ...>image</figure>.</item>
 <label>ITEM
 THREE:</label>
 <item> This is the third item with a <field ...> ... </field>
 </item>
 ...
 </list>
 <item> This is the third item in the list </item>
 ...
</list>

13.7.13. list

Structural Element

The list element is used to display sets of sequential data. It contains an optional head element, as well as any
number of item and list elements. Items contain textual information, while sublists contain other item or list
elements. An item can also be associated with a label element that annotates an item with a number, a textual
description of some sort, or a simple bullet. The list type (ordered, bulleted, gloss, etc.) is then determined either by the
content of labels on items or by an explicit value of the type attribute. Note that if labels are used in conjunction
with any items in a list, all of the items in that list must have a label. It is also recommended to avoid mixing
label styles unless an explicit type is specified.

Parent

div

DRI Schema Reference

200

list

Children

head

(zero or one)

label

(any)

item

(any)

list

(any)

Attributes

id
required

A unique identifier of the element

n
required

A local identifier used to differentiate the element from its siblings

rend
optional

An optional rend attribute provides a hint on how the list should be rendered, independent of its type. Common
values are but not limited to:

alphabet
The list should be rendered as an alphabetical index

columns
The list should be rendered in equal length columns as determined by the theme.

columns2
The list should be rendered in two equal columns.

columns3
The list should be rendered in three equal columns.

horizontal
The list should be rendered horizontally.

numeric
The list should be rendered as a numeric index.

DRI Schema Reference

201

vertical
The list should be rendered vertically.

type
optional

An optional attribute to explicitly specify the type of list. In the absence of this attribute, the type of a list will be
inferred from the presence and content of labels on its items. Accepted values are:

form
Used for form lists that consist of a series of fields.

bulleted
Used for lists with bullet-marked items.

gloss
Used for lists consisting of a set of technical terms, each marked with a label element and accompanied
by the definition marked as an item element.

ordered
Used for lists with numbered or lettered items.

progress
Used for lists consisting of a set of steps currently being performed to accomplish a task. For this type to apply,
each item in the list should represent a step and be accompanied by a label that contains the displayable
name for the step. The item contains an xref that references the step. Also the rend attribute on the item
element should be: ìavailableî (meaning the user may jump to the step using the provided xref), ìunavailableî
(the user has not meet the requirements to jump to the step), or ìcurrentî (the user is currently on the step)

simple
Used for lists with items not marked with numbers or bullets.

<div ...>
 ...
 <list n="list-example"
 id="XMLExample.list.list-example">
 <head>Example List</head>
 <item> ... </item>
 <item> ... </item>
 ...
 <list n="list-example2"
 id="XMLExample.list.list-example2">
 <head>Example Sublist</head>
 <label> ... </label>
 <item> ... </item>
 <label> ... </label>
 <item> ... </item>
 <label> ... </label>
 <item> ... </item>
 ...
 </list>
 <label> ... </label>
 <item> ... </item>
 ...

DRI Schema Reference

202

 </list>
</div>

13.7.14. META

Top-Level Container

The meta element is a top level element and exists directly inside the document element. It serves as a container
element for all metadata associated with a document broken up into categories according to the type of metadata they
carry.

Parent

document

Children

userMeta

(one)

pageMeta

(one)

repositoryMeta

(one)

Attributes

None

<document version=1.0>
 <meta>
 <userMeta> ... </userMeta>
 <pageMeta> ... </pageMeta>
 <repositoryMeta> ... </repositoryMeta>
 </meta>
 <body> ... </body>
 <options> ... </options>
</document>

13.7.15. metadata

Text Container

Structural Element

DRI Schema Reference

203

The metadata element carries generic metadata information in the form on an attribute-value pair. The type
of information it contains is determined by two attributes: element, which specifies the general type of metadata
stored, and an optional qualifier attribute that narrows the type down. The standard representation for this pairing is
element.qualifier. The actual metadata is contained in the text of the tag itself. Additionally, a language attribute can
be used to specify the language used for the metadata entry.

Parent

userMeta

pageMeta

Children

none

Attributes

element
required

The name of a metadata field.

language
optional

An optional attribute to specify the language used in the metadata tag.

qualifier
optional

An optional postfix to the field name used to further differentiate the names.

<meta>
 <userMeta>
 <metadata element="identifier" qualifier="firstName"> Bob
 </metadata>
 <metadata element="identifier" qualifier="lastName"> Jones
 </metadata>
 <metadata ...> ...
 </metadata>
 ...
 </userMeta>
 <pageMeta>
 <metadata element="rights"
 qualifier="accessRights">user</metadata>

 <metadata ...> ...
 </metadata>
 ...
 </pageMeta>
</meta>

DRI Schema Reference

204

13.7.16. OPTIONS

Top-Level Container

The options element is the main container for all actions and navigation options available to the user. It consists of
any number of list elements whose items contain navigation information and actions. While any list of navigational
options may be contained in this element, it is suggested that at least the following 5 lists be included.

Parent

document

Children

list

(any)

Attributes

None

<document version=1.0>

 <meta> Ö </meta>

 <body> Ö </body>

 <options>

 <list n="navigation-example1"
 id="XMLExample.list.navigation-example1">

 <head>Example Navigation List 1</head>

 <item><xref target="/link/to/option">Option
 One</xref></item>

 <item><xref target="/link/to/option">Option
 two</xref></item>

 ...

 </list>

 <list n="navigation-example2"
 id="XMLExample.list.navigation-example2">

 <head>Example Navigation List 2</head>

 <item><xref target="/link/to/option">Option

DRI Schema Reference

205

 One</xref></item>

 <item><xref target="/link/to/option">Option
 two</xref></item>

 ...

 </list>

 ...

 </options>

</document>

13.7.17. p

Rich Text Container

Structural Element

The p element is a rich text container used by divs to display textual data in a paragraph format. As a rich text
container it can contain hyperlinks, emphasized blocks of text, images and form fields in addition to plain text.

Parent

div

Children

hi

(any)

xref

(any)

figure

(any)

field

(any)

Attributes

id
optional

DRI Schema Reference

206

A unique identifier of the element.

n
optional

A local identifier used to differentiate the element from its siblings.

rend
optional

A rendering hint used to override the default display of the element.

<div n="division-example"
 id="XMLExample.div.division-example">

 <p> This is a regular paragraph.
 </p>

 <p> This text is normal, while <hi rend="bold">this text is bold
 and this text is <hi rend="italic">bold and italic.</hi></hi>
 </p>

 <p> This paragraph contains a <xref
 target="/link/target">link</xref>, a static <figure
 source="/image.jpg">image</figure>, and a <figure target=
 "/link/target" source="/image.jpg">image link.</figure>
 </p>

</div>

13.7.18. pageMeta

Metadata Element

The pageMeta element contains metadata associated with the document itself. It contains generic metadata
elements to carry the content, and any number of trail elements to provide information on the userís current location
in the system. Required and suggested values for metadata elements contained in pageMeta include but are not
limited to:

• browser (suggested): The userís browsing agent as reported to server in the HTTP request.

• browser.type (suggested): The general browser family as derived form the browser metadata field. Possible values
may include "MSIE" (for Microsoft Internet Explorer), "Opera" (for the Opera browser), "Apple" (for Apple web kit
based browsers), "Gecko" (for Netscape, Mozilla, and Firefox based browsers), or "Lynx" (for text based browsers).

• browser.version (suggested): The browser version as reported by HTTP Request.

• contextPath (required): The base URL of the Digital Repository system.

• redirect.time (suggested): The time that must elapse before the page is redirected to an address specified by the
redirect.url metadata element.

• redirect.url (suggested): The URL destination of a redirect page

DRI Schema Reference

207

• title (required): The title of the document/page that the user currently browsing.

See the metadata and trail tag entries for more information on their structure.

ParentmetaChildrenmetadata (any)trail (any)AttributesNone

<meta>

 <userMeta> ... </userMeta>

 <pageMeta>

 <metadata element="title">Examlpe DRI
 page</metadata>

 <metadata
 element="contextPath">/xmlui/</metadata>

 <metadata ...> ... </metadata>

 ...

 <trail source="123456789/6"> A bread crumb item
 </trail>

 <trail ...> ... </trail>

 ...

 </pageMeta>

</meta>

13.7.19. params

Structural Component

The params element identifies extra parameters used to build a form field. There are several attributes that may be
available for this element depending on the field type.

Parent

field

Children

none

Attributes

cols
optional

DRI Schema Reference

208

The default number of columns that the text area should span. This applies only to textarea field types.

maxlength
optional

The maximum length that the theme should accept for form input. This applies to text and password field types.

multiple
optional

yes/no value. Determine if the field can accept multiple values for the field. This applies only to select lists.

operations
optional

The possible operations that may be preformed on this field. The possible values are "add" and/or "delete". If both
operations are possible then they should be provided as a space separated list.

The "add" operations indicates that there may be multiple values for this field and the user may add to the set
one at a time. The front-end should render a button that enables the user to add more fields to the set. The button
must be named the field name appended with the string "_add", thus if the fieldís name is "firstName" the button
must be called "firstName_add".

The "delete" operation indicates that there may be multiple values for this field each of which may be removed
from the set. The front-end should render a checkbox by each field value, except for the first, The checkbox must
be named the field name appended with the string "_selected", thus if the fieldís name is "firstName" the checkbox
must be called "firstName_selected" and the value of each successive checkbox should be the field name. The
front-end must also render a delete button. The delete button name must be the fieldís name appended with the
string "_delete".

rows
optional

The default number of rows that the text area should span. This applies only to textarea field types.

size
optional

The default size for a field. This applies to text, password, and select field types.

<p>

 <field id="XMLExample.field.name" n="name" type="text"
 required="yes">

 <params size="16"
 maxlength="32"/>

 <help>Some help text with <i18n>localized
 content</i18n>.</help>

 <default>Default value goes here</default>

 </field>

DRI Schema Reference

209

</p>

13.7.20. reference

Metadata Reference Element

reference is a reference element used to access information stored in an extarnal metadata file. The url attribute
is used to locate the external metadata file. The type attribute provides a short limited description of the referenced
object's type.

reference elements can be both contained by includeSet elements and contain includeSets themselves,
making the structure recursive.

Parent

referenceSet

Children

referenceSet

(zero or more)

Attributes

url
required

A url to the external metadata file.

repositoryIdentifier
required

A reference to the repositoryIdentifier of the repository.

type
optional

Description of the reference object's type.

 <includeSet n="browse-list"
 id="XMLTest.includeSet.browse-list">
 <reference url="/metadata/handle/123/4/mets.xml"
 repositoryID="123" type="DSpace
 Item"/>
 <reference url="/metadata/handle/123/5/mets.xml"
 repositoryID="123" />
 ...
 </includeSet>

13.7.21. referenceSet

DRI Schema Reference

210

Metadata Reference Element

The referenceSet element is a container of artifact or repository references.

Parent

div

reference

Children

head

(zero or one)

reference

(any)

Attributes

id
required

A unique identifier of the element

n
required

Local identifier used to differentiate the element from its siblings

orderBy
optional

A reference to the metadata field that determines the ordering of artifacts or repository objects within the set.
When the Dublin Core metadata scheme is used this attribute should be the element.qualifier value that the set
is sorted by. As an example, for a browse by title list, the value should be sortedBy=title, while for browse by
date list it should be sortedBy=date.created

rend
optional

A rendering hint used to override the default display of the element.

type
required

Determines the level of detail for the given metadata. Accepted values are:

summaryList
Indicates that the metadata from referenced artifacts or repository objects should be used to build a list
representation that is suitable for quick scanning.

DRI Schema Reference

211

summaryView
Indicates that the metadata from referenced artifacts or repository objects should be used to build a partial
view of the referenced object or objects.

detailList
Indicates that the metadata from referenced artifacts or repository objects should be used to build a list
representation that provides a complete, or near complete, view of the referenced objects. Whether such a view
is possible or different from summaryView depends largely on the repository at hand and the implementing
theme.

detailView
Indicates that the metadata from referenced artifacts or repository objects should be used to display complete
information about the referenced object. Rendering of several references included under this type is up to
the theme.

 <div ...>
 <head> Example Division </head>
 <p> ... </p>
 <table> ... </table>
 <list>
 ...
 </list>
 <referenceSet n="browse-list"
 id="XMLTest.referenceSet.browse-list" type="summaryView"
 informationModel="DSpace">
 <head>A header for the includeset</head>
 <reference
 url="/metadata/handle/123/34/mets.xml"/>
 <reference
 url=""metadata/handle/123/34/mets.xml/>
 </referenceSet>
 ...
 </p>

13.7.22. repository

Metadata Element

The repository element is used to describe the repository. Its principal component is a set of structural metadata
that carrier information on how the repositoryís objects under objectMeta are related to each other. The principal
method of encoding these relationships at the time of this writing is a METS document, although other formats, like
RDF, may be employed in the future.

Parent

repositoryMeta

Children

none

Attributes

DRI Schema Reference

212

repositoryID
required

A unique identifier assigned to a repository. It is referenced by the object element to signify the repository
that assigned its identifier.

url
required

A url to the external METS metadata file for the repository.

<repositoryMeta>

 <repository repositoryID="123456789"
 url="/metadata/handle/1234/4/mets.xml" />

</repositoryMeta>

13.7.23. repositoryMeta

Metadata Element

The repositoryMeta element contains metadata refernces about the repositories used in the used or referenced in
the document. It can contain any number of repository elements.

See the repository tag entry for more information on the structure of repository elements.

Parent

Meta

Children

repository

(any)

Attributes

None

<meta>

 <userMeta> ... </usermeta>

 <pageMeta> ... </pageMeta>

 <repositoryMeta>

 <repository repositoryIID="..." url="..."
 />

DRI Schema Reference

213

 </repositoryMeta>

</meta>

13.7.24. row

Structural Element

The row element is contained inside a table and serves as a container of cell elements. A required role attribute
determines how the row and its cells are rendered.

Parent

table

Children

cell

(any)

Attributes

id
optional

A unique identifier of the element

n
optional

A local identifier used to differentiate the element from its siblings

rend
optional

A rendering hint used to override the default display of the element.

role
required

Indicates what kind of information the row carries. Possible values include "header" and "data".

<table n="table-example" id="XMLExample.table.table-example" rows="2"
 cols="3">

 <row
 role="head">

 <cell cols="2">Data Label One and
 Two</cell>

DRI Schema Reference

214

 <cell>Data Label Three</cell>

 ...

 </row> <row>

 <cell> Value One </cell>

 <cell> Value Two </cell>

 <cell> Value Three </cell>

 ...

 </row>

 ...

</table>

13.7.25. table

Structural Element

The table element is a container for information presented in tabular format. It consists of a set of row elements
and an optional header.

Parent

div

Children

head

(zero or one)

row

(any)

Attributes

cols
required

The number of columns in the table.

id
required

A unique identifier of the element

DRI Schema Reference

215

n
required

A local identifier used to differentiate the element from its siblings

rend
optional

A rendering hint used to override the default display of the element.

rows
required

The number of rows in the table.

<div n="division-example"
 id="XMLExample.div.division-example">

 <table n="table1" id="XMLExample.table.table1" rows="2"
 cols="3">

 <row role="head">

 <cell cols="2">Data Label One and
 Two</cell>

 <cell>Data Label Three</cell>

 ...

 </row>

 <row>

 <cell> Value One </cell>

 <cell> Value Two </cell>

 <cell> Value Three </cell>

 ...

 </row>

 ...

 </table>
 ...
</div>

13.7.26. trail

Text Container

DRI Schema Reference

216

Metadata Element

The trail element carries information about the userís current location in the system relative of the repositoryís root
page. Each instance of the element serves as one link in the path from the root to the current page.

Parent

pageMeta

Children

none

Attributes

rend
optional

A rendering hint used to override the default display of the element.

target
optional

An optional attribute to specify a target URL for a trail element serving as a hyperlink. The text inside the element
will be used as the text of the link.

<pageMeta>

 <metadata element="title">Examlpe DRI
 page</metadata>

 <metadata
 element="contextPath">/xmlui/</metadata>

 <metadata ...> ... </metadata>

 ...

 <trail target="/myDSpace"> A bread crumb item pointing to a
 page. </trail> <trail ...> ... </trail>

 ...

</pageMeta>

13.7.27. userMeta

Metadata Element

The userMeta element contains metadata associated with the user that requested the document. It contains generic
metadata elements, which in turn carry the information. Required and suggested values for metadata elements
contained in userMeta include but not limited to:

DRI Schema Reference

217

• identifier (suggested): A unique identifier associated with the user.

• identifier.email (suggested): The requesting userís email address.

• identifier.firstName (suggested): The requesting userís first name.

• identifier.lastName (suggested): The requesting userís last name.

• identifier.logoutURL (suggested): The URL that a user will be taken to when logging out.

• identifier.url (suggested): A url reference to the userís page within the repository.

• language.RFC3066 (suggested): The requesting userís preferred language selection code as describe by RFC3066

• rights.accessRights (required): Determines the scope of actions that a user can perform in the system. Accepted
values are:

• none: The user is either not authenticated or does not have a valid account on the system

• user: The user is authenticated and has a valid account on the system

• admin: The user is authenticated and belongs to the systemís administrative group

See the metadata tag entry for more information on the structure of metadata elements.

ParentmetaChildrenmetadata (any)Attributes

authenticated
required

Accepted values are "yes", "no". Determines whether the user has been authenticated by the system.

<meta>

 <userMeta>

 <metadata element="identifier" qualifier="email">

 bobJones@tamu.edu

 </metadata>

 <metadata element="identifier" qualifier="firstName"> Bob
 </metadata>

 <metadata element="identifier" qualifier="lastName"> Jones
 </metadata>

 <metadata element="rights"
 qualifier="accessRights">user</metadata>

 <metadata ...> ... </metadata>

 ...

DRI Schema Reference

218

 <trail source="123456789/6"> A bread crumb item
 </trail>

 <trail ...> ... </trail>

 ...

 </userMeta>

 <pageMeta> ... </pageMeta>

</meta>

13.7.28. value

Rich Text Container

Structural Element

The value element contains the value associated with a form field and can serve a different purpose for various field
types. The value element is comprised of two subelements: the raw element which stores the unprocessed value directly
from the user of other source, and the interpreted element which stores the value in a format appropriate for display
to the user, possibly including rich text markup.

Parent

field

Children

hi

(any)

xref

(any)

figure

(any)

Attributes

optionSelected
optional

An optional attribute for select, checkbox, and radio fields to determine if the value is to be selected or not.

optionValue
optional

DRI Schema Reference

219

An optional attribute for select, checkbox, and radio fields to determine the value that should be returned when
this value is selected.

type
required

A required attribute to specify the type of value. Accepted types are:

raw
The raw type stores the unprocessed value directly from the user of other source.

interpreted
The interpreted type stores the value in a format appropriate for display to the user, possibly including rich
text markup.

default
The default type stores a value supplied by the system, used when no other values are provided.

<p>
 <hi> ... </hi>
 <xref> ... </xref>
 <figure> ... </figure>
 <field id="XMLExample.field.name" n="name" type="text"
 required="yes">
 <params size="16" maxlength="32"/>
 <help>Some help text with <i18n>localized
 content</i18n>.</help>
 <value type="default">Author,
 John</value>
 </field>
</p>

13.7.29. xref

Text Container

Structural Element

The xref element is a reference to an external document. It can be mixed freely with text, and any text within the
tag itself will be used as part of the linkís visual body.

Parent

cell

p

item

DRI Schema Reference

220

hi

Children

none

Attributes

target
required

A target for the reference, using either a URL or an id of an existing element as a destination for the xref.

<p>

 <xref target="/url/link/target">This text is shown as a
 link.</xref>

</p>

221

Chapter 14. DSpace System
Documentation: Version History
14.1. Changes in DSpace 1.5

14.1.1. General Improvements
• Highly configurable and theme-able new user interface (Manakin).

• Apache Maven-based modular build system.

• LNI (Lightweight Network Interface) service. Allows programmatic ingest of content via WebDAV or SOAP.

• SWORD (Simple Web-service Offering Repository Deposit): repository-standard ingest service using Atom
Publishing Protocol.

• Highly configurable item web submission system. All submission steps are configurable not just metadata pages.

• Browse functionality allowing customisation of the available indexes via dspace.cfg and pluggable normalisation
of the sort strings. Integration with both JSP-UI and XML-UI included.

• Extensible content event notification service.

• Generation of Google and HTML sitemaps

14.1.2. Bug fixes and smaller patches
• New options for ItemImporter to support bitstream permissions and descriptions.

• 1824710 Fix - Change in Creative Commons RDF.

• 1794700 Fix - Stat-monthly and stat-report-monthly

• 1566820 Patch - Authentication code moved to new org.dspace.authenticate package, add IP AUth

• 1670093 Patch - More stable metadata and schema registry import Option to generate community and collection
"strength" as a batch job

• 1659868 Patch - Improved database level debugging

• 1620700 Patch - Add Community and Sub-Community to OAI Sets

• 1679972 Fix - OAIDCCrosswalk NPE and invalid character fix, also invalid output prevented

• 1549290 Fix - Suggest Features uses hard coded strings

• 1727034 Fix - Method MetadataField.unique() is incorrect for null values

• 1614546 Fix - Get rid of unused mets_bitstream_id column

• 1450491 Patch - i18n configurable multilingualism support

• 1764069 Patch - Replace "String" with "Integer" in PreparedStatement where needed

DSpace System Documentation:
Version History

222

• 1743188 Patch - for Request #1145499 - Move Items

• 179196 Patch - Oracle SQL in Bitstream Checker

• 1751638 Patch - Set http disposition header to force download of large bitstreams

• 1799575 Patch - New EPersonConsumer event consumer

• 1566572 Patch - Item metadata in XHTML head elements

• 1589429 Patch - "Self-Named" Media Filters (i.e. MediaFilter Plugins) (updated version of this patch)

• 1888652 Patch - Statistics Rewritten In Java

• 1444364 Request - Metadata registry exporter

• 1221957 Request - Admin browser for withdrawn items

• 1740454 Fix - Concurrency

• 1552760 Fix - Submit interface looks bad in Safari

• 1642563 Patch - bin/update-handle-prefix rewritten in Java

• 1724330 Fix - Removes "null" being displayed in community-home.jsp

• 1763535 Patch - Alert DSpace administrator of new user registration

• 1759438 Patch - Multilingualism Language Switch - DSpace Header

14.2. Changes in DSpace 1.4.1

14.2.1. General Improvements
• Error pages now return appropriate HTTP status codes (e.g. 404 not found)

• Bad filenames in /bitstream/ URLs now result in 404 error -- prevents infinite URL spaces confusing crawlers and
bad "persistent" bitstream IDs circulating

• Prevent infinite URL spaces in HTMLServlet

• InstallItem no longer sets dc.format.extent, dc.format.mimetype; no longer sets default value for dc.language.iso
if one is not present

• Empty values in drop-down submit fields are not added as empty metadata values

• API methods for searching epeople and groups

• Support stats from both 1.3 and 1.4

• [dspace]/bin/update-handle-prefix now runs index-all

• Remove cases of System.out from code executed in webapp

• Change "View Licence" to "View License" in Messages.properties

• dspace.cfg comments changed to indicate what default.language actually means

DSpace System Documentation:
Version History

223

• HandleServlet and BitstreamServlet support If-Modified-Since requests

• Improved sanity-checking of XSL-based ingest crosswalks

• Remove thumbnail filename from alt-text

• Include item title in HTML title element

• Improvements to help prevent spammers and sploggers

• Make cleanup() commit outstanding work every 100 iterations

• Better handling where email send failed due to wrong address for new user

• Include robots.txt to limit bots navigating author, date and browse by subject pages

• Add css styles for print media

• RSS made more configurable and provide system-wide RSS feed, also moves text to Messages.properties

• Jar file updates (includes required code changes for DSIndexer and DSQuery and new jars fontbox.jar and
serializer.jar)

• Various documentation additions and cleanups

• XHTML compliance improvements

• Move w3c valid xhtml boiler image into local repository

• Remove uncessary Log4j Configuration in CheckerCommand

• Include Windows CLASSPATH in dsrun.bat

14.2.2. Bug fixes
• 1604037 - UIUtil.encodeBitstream() now correctly encodes URLs (no longer incorrectly substitutes '+' for spaces

in non-query segment

• 1592984 - Date comparisons strip time in org.dspace.harvest.Harvest

• 1589902 - Duplicate [field] checking error [on input-forms.xml]

• 1596952 - Collection Wizard create Template missing schema

• 1596978 - View unfinished submissions - collection empty

• 1588625 - Incorrect text on item mapper screen

• 1597805 - DIDL Crosswalk: wrong resource management

• 1605635 - NPE in Utils.java

• 1597504 - Search result page shows shortened query string

• 1532389 - Item Templates do not work for non-dc fields

• 1066771 - Metadata edit form dropping DC qualifier

• 1548738 - Multiple Metadata Schema, schema not shown on edit item page

DSpace System Documentation:
Version History

224

• 1589895 - Not possible to add unqualified Metadata Field

• 1543853 - Statistics do not work in 1.4

• 1541381 - Browse-by-date and browse-by-title not working

• 1556947 - NullPointerException when no user selected to del/edit

• 1554064 - Fix exception handling for ClassCastException in BitstreamServlet

• 1548865 - Browse errors on withdrawn item

• 1554056 - Community/collection handle URL with / redirects to homepage

• 1571490 - UTF-8 encoded characters in licence

• 1571519 - UTF-8 in statistics

• 1544807 - Browse-by-Subject/Author paging mechanism broken

• 1543966 - "Special" groups inside groups bug

• 1480496 - Cannot turn off "ignore authorization" flag!

• 1515148 - Community policies not deleting correctly

• 1556829 - Docs mention old SiteAuthenticator class

• 1606435 - Workflow text out of context

• Fix for bitstream authorization timeout

• Fix to make sure cleanup() doesn't fail with NullPointerException

• Fix for removeBitstream() failing to update primary bitstream

• Fix for Advanced Search ignoring conjunctions for arbitrary number of queries

• Fix minor bug in Harvest.java for Oracle users

• Fix missing title for news editor page

• Small Messages.properties modification (change of DSpace copyright text)

• fix PDFBox tmp file issue

• Fix HttpServletRequest encoding issues

• Fix bug in TableRow toString() method where NPE is thrown if tablename not set

• Update DIDL license and change coding style to DSpace standard

14.3. Changes in DSpace 1.4

14.3.1. General Improvements
• Content verification through periodic checksum checking

DSpace System Documentation:
Version History

225

• Support for branded preview image

• Add/replace Creative Commons in 'edit item' tool

• Customisable item listing columns and browse indices

• Script for updating handle prefixes (e.g. for moving from development to production)

• Configurable boolean search operator

• Controlled vocabulary patch to provide search on classification terms, and addition of terms during submission.

• Add 'visibility' element to input-forms.xml

• Browse by subject feature

• Log4J enhancement to use XML configuration

• QueryArgs class can support any number of fields in advanced search.

• Community names no longer have to be unique

• Enhanced Windows support

• Support for multiple (flat) metadata schemas

• Suggest an item page

• RSS Feeds

• Performance enhancements

• Stackable authentication methods

• Plug-in manager

• Pluggable SIP/DIP support and metadata crosswalks

• Nested groups of e-people

• Expose METS and MPEG-21 DIDL DIPs via OAI-PMH

• Configurable Lucene search analyzer (e.g. for Chinese metadata)

• Support for SMTP servers requiring authentication

14.3.2. Bug fixes
• 1358197 - Edit Item, empty DC fields not removable

• 1363633 - Submission step 1 fails when there are no collections

• 1255264 - Resource policy eperson value was set to wrong column

• 1380494 - Error deleting an item with multiple metadata schema support

• 1443649 - Cannot configure unqualified elements for advanced search index

DSpace System Documentation:
Version History

226

• 1333687 - Browse-(title|date) fails on withdrawn item

• 1066713 - Two (sub)communities cannot have one name

• 1284055 - Two Communities of same name throws error

• 1035366 - Bitstream size column should be bigint

• 1352257 - Selecting a Group for GroupToGroup while Creating Collection

• 1352226 - Navigation and Sorting in Group List (Select Groups) fails

• 1348276 - Null in collection name causes OAI ListSets to fail

• 1160898 - dspace_migrate removes Date.Issued from prev published items

• 1261191 - Malformed METS metadata exported

14.4. Changes in DSpace 1.3.2

14.4.1. General Improvements
• DSpace UI XHTML/WAI compliant

• Configure metadata fields shown on simple item display

• Supervisor/workspace help documentation

14.4.2. Bug fixes
• Oracle compatibility fixes

• Item exporter now correctly exports metadata in UTF-8

• fixed to handle 'null' values passed in

14.5. Changes in DSpace 1.3.1

14.5.1. Bug fixes
• 1252153 - Error on fresh install

14.6. Changes in DSpace 1.3

14.6.1. General Improvements
• Initial i18n Support for JSPs - Note: the implementation of this feature required changes to almost all JSP pages

• LDAP authentication support

• Log file analysis and report generation

DSpace System Documentation:
Version History

227

• Configurable item licence viewing

• Supervision order/collaborative workspace administrative tools

• Basic workspace for submissions in progress, with support for supervision

• SRB storage system option

• Updated handle server system

• Database optimisations

• Latest versions of Xerces, Xalan and OAICAT jars

• Various documentation additions and cleanups

14.6.2. Bug fixes
• 1161459 - ItemExporter fails with Too many open files

• 1167373 - Email date field not populated

• 1193948 - New item submit problem

• 1188132 - NullPointerException when Adding EPerson

• 1188016 - Cannot Edit an Eperson

• 1219701 - Unable to open unfinished submission

• 1206836 - community strengths not reflecting sub-community

• 1238262 - Submit UI nav/progress buttons no longer show progress

• 1238276 - Double quote problem in some fields in submit UI

• 1238277 - format support level not shown in "uploaded file" page

• 1242548 - Uploading non-existing files

• 1244743 - Bad lookup key for special case of DC Title in ItemTag.java

• 1245223 - Subscription Emailer fails

• 1247508 - Error when browsing item with no content/bitstream collections

• Set the content type in the HTTP header

• Fix issue where EPerson edit would not work due to form indexing (partial fix)

• POST handling in HTMLServlet

• Missing ContentType directives added to some JSPs

• Name dependency on Collection Admin and Submitter groups fixed

• Fixed OAI-PMH XML encoding

DSpace System Documentation:
Version History

228

14.7. Changes in DSpace 1.2.2

14.7.1. General Improvements
• Customisable submission forms added

• Configurable number of index terms in Lucene for full-text indexing

• Improved scalability in media filter

• Submit button on collection pages only appears if user has authorisation

• PostgreSQL 8.0 compatibility

• Search scope retention to improve browsing

• Community and collection strengths displayed

• Upgraded OAICat software

14.7.2. Bug fixes
• Fix for Oracle too many cursors problem.

• Fix for UTF-8 encoded searches in advanced search.

• Fix for handling "\" in bitstream names.

• Fix to prevent delete of "unknown" bitstream format

• Fix for ItemImport creating new handles for replaced items

14.7.3. Changes in JSPs
• collection-home.jsp changed

• community-home.jsp changed

• community-list.jsp changed

• home.jsp changed

• dspace-admin/list-formats.jsp changed

• dspace-admin/wizard-questions.jsp changed

• search/results.jsp changed

• submit/cancel.jsp changed

• submit/change-file-description.jsp changed

• submit/choose-file.jsp changed

• submit/complete.jsp changed

DSpace System Documentation:
Version History

229

• submit/creative-commons.jsp changed

• submit/edit-metadata.jsp new

• submit/get-file-format.jsp changed

• submit/initial-questions.jsp changed

• submit/progressbar.jsp changed

• submit/review.jsp changed

• submit/select-collection.jsp changed

• submit/show-license.jsp changed

• submit/show-uploaded-file.jsp changed

• submit/upload-error.jsp changed

• submit/upload-file-list.jsp changed

14.8. Changes in DSpace 1.2.1

14.8.1. General Improvements
• Oracle support added

• Thumbnails in item view can now be switched off/on

• Browse and search thumbnail options

• Improved item importer

• can now import to multiple collections

• added --test flag to simulate an import, without actually making any changes

• added --resume flag to try to resume the import in case the import is aborted

• Configurable fields for the search index

• Script for transferring items between DSpace instances

• Sun library JARs (JavaMail, Java Activation Framework and Servlet) now included in DSpace source code bundle

14.8.2. Bug fixes
• A logo to existing collection can now be added. Fixes SF bug #1065933

• The community logo can now be edited. Fixes SF bug #1035692

• MediaFilterManager doesn't 'touch' every item every time. Fixes SF bug #1015296

• Supported formats help page, set the format support level to "known" as default

• Fixed various database connection pool leaks

DSpace System Documentation:
Version History

230

14.8.3. Changed JSPs
• collection-home changed

• community-home changed

• display-item changed

• dspace-admin/confirm-delete-collection moved to tools/ and changed

• dspace-admin/confirm-delete-community moved to tools/ and changed

• dspace-admin/edit-collection moved to tools/ and changed

• dspace-admin/edit-community moved to tools/ and changed

• dspace-admin/index changed

• dspace-admin/upload-logo changed

• dspace-admin/wizard-basicinfo changed

• dspace-admin/wizard-default-item changed

• dspace-admin/wizard-permissions changed

• dspace-admin/wizard-questions changed

• help/formats.html removed

• help/formats changed

• index changed

• layout/navbar-admin changed

14.9. Changes in DSpace 1.2

14.9.1. General Improvments
• Communities can now contain sub-communities

• Items may be included in more than one collection

• Full text extraction and searching for MS Word, PDF, HTML, text documents

• Thumbnails displayed in item view for items that contain images

• Configurable MediaFilter tool creates both extracted text and thumbnails

• Bitstream IDs are now persistent - generated from item's handle and a sequence number

• Creative Commons licenses can optionally be added to items during web submission process

14.9.2. Administration
• If you are logged in as administrator, you see admin buttons on item, collection, and community pages

DSpace System Documentation:
Version History

231

• New collection administration wizard

• Can now administer collection's submitters from collection admin tool

• Delegated administration - new 'collection editor' role - edits item metadata, manages submitters list, edits collection
metadata, links to items from other collections, and can withdraw items

• Admin UI moved from /admin to /dspace-admin to avoid conflict with Tomcat /admin JSPs

• New EPerson selector popup makes Group editing much easier

• 'News' section is now editable using admin UI (no more mucking with JSPs)

14.9.3. Import/Export/OAI
• New tool that exports DSpace content in AIPs that use METS XML for metadata (incomplete)

• OAI - sets are now collections, identified by Handles ('safe' with /, : converted to _)

• OAI - contributor.author now mapped to oai_dc:creator

14.9.4. Miscellaneous
• Build process streamlined with use of WAR files, symbolic links no longer used, friendlier to later versions of

Tomcat

• MIT-specific aspects of UI removed to avoid confusion

• Item metadata now rendered to avoid interpreting as HTML (displays as entered)

• Forms now have no-cache directive to avoid trouble with browser 'back' button

• Bundles now have 'names' for more structure in item's content

14.9.5. JSP file changes between 1.1 and 1.2
This list generated with cvs -Q rdiff -s -r dspace-1_1 dspace and a sprinkling of perl.

• Changed: dspace/jsp/collection-home.jsp

• Changed: dspace/jsp/community-home.jsp

• Changed: dspace/jsp/community-list.jsp

• Changed: dspace/jsp/display-item.jsp

• Changed: dspace/jsp/index.jsp

• Changed: dspace/jsp/home.jsp

• Changed: dspace/jsp/styles.css.jsp

• Moved to dspace-admin and changed: dspace/jsp/admin/authorize-advanced.jsp

• Moved to dspace-admin and changed: dspace/jsp/admin/authorize-collection-edit.jsp

• Moved to dspace-admin and changed: dspace/jsp/admin/authorize-community-edit.jsp

DSpace System Documentation:
Version History

232

• Moved to dspace-admin and changed: dspace/jsp/admin/authorize-item-edit.jsp

• Moved to dspace-admin and changed: dspace/jsp/admin/authorize-main.jsp

• Moved to dspace-admin and changed: dspace/jsp/admin/authorize-policy-edit.jsp

• Moved to dspace-admin: dspace/jsp/admin/collection-select.jsp

• Moved to dspace-admin: dspace/jsp/admin/community-select.jsp

• Moved to dspace-admin: dspace/jsp/admin/confirm-delete-collection.jsp

• Moved to dspace-admin: dspace/jsp/admin/confirm-delete-community.jsp

• Moved to dspace-admin: dspace/jsp/admin/confirm-delete-dctype.jsp

• Moved to dspace-admin: dspace/jsp/admin/confirm-delete-eperson.jsp

• Moved to dspace-admin: dspace/jsp/admin/confirm-delete-format.jsp

• Moved to dspace/jsp/tools: dspace/jsp/admin/confirm-delete-item.jsp

• Moved to dspace/jsp/tools: dspace/jsp/admin/confirm-withdraw-item.jsp

• Moved to dspace-admin and changed: dspace/jsp/admin/edit-collection.jsp

• Moved to dspace-admin and changed: dspace/jsp/admin/edit-community.jsp

• Moved to dspace/jsp/tools and changed: dspace/jsp/admin/edit-item-form.jsp

• Moved to dspace-admin and changed: dspace/jsp/admin/eperson-browse.jsp

• Moved to dspace-admin: dspace/jsp/admin/eperson-confirm-delete.jsp

• Moved to dspace-admin and changed: dspace/jsp/admin/eperson-edit.jsp

• Moved to dspace-admin and changed: dspace/jsp/admin/eperson-main.jsp

• Moved to dspace/jsp/tools and changed: dspace/jsp/admin/get-item-id.jsp

• Moved to dspace/jsp/tools and changed: dspace/jsp/admin/group-edit.jsp

• Moved to dspace-admin and changed: dspace/jsp/admin/group-eperson-select.jsp

• Moved to dspace/jsp/tools and changed: dspace/jsp/admin/group-list.jsp

• Moved to dspace-admin: dspace/jsp/admin/index.jsp

• Moved to dspace-admin and changed: dspace/jsp/admin/item-select.jsp

• Moved to dspace-admin and changed: dspace/jsp/admin/list-communities.jsp

• Moved to dspace-admin and changed: dspace/jsp/admin/list-dc-types.jsp

• Removed: dspace/jsp/admin/list-epeople.jsp

• Moved to dspace-admin and changed: dspace/jsp/admin/list-formats.jsp

• Moved to dspace/jsp/tools: dspace/jsp/admin/upload-bitstream.jsp

DSpace System Documentation:
Version History

233

• Moved to dspace-admin and changed: dspace/jsp/admin/upload-logo.jsp

• Moved to dspace-admin: dspace/jsp/admin/workflow-abort-confirm.jsp

• Moved to dspace-admin and changed: dspace/jsp/admin/workflow-list.jsp

• Changed: dspace/jsp/browse/authors.jsp

• Changed: dspace/jsp/browse/items-by-author.jsp

• Changed: dspace/jsp/browse/items-by-date.jsp

• Changed: dspace/jsp/browse/no-results.jsp

• New: dspace-admin/eperson-deletion-error.jsp

• New: dspace/jsp/dspace-admin/news-edit.jsp

• New: dspace/jsp/dspace-admin/news-main.jsp

• New: dspace/jsp/dspace-admin/wizard-basicinfo.jsp

• New: dspace/jsp/dspace-admin/wizard-default-item.jsp

• New: dspace/jsp/dspace-admin/wizard-permissions.jsp

• New: dspace/jsp/dspace-admin/wizard-questions.jsp

• Changed: dspace/jsp/components/contact-info.jsp

• Changed: dspace/jsp/error/internal.jsp

• New: dspace/jsp/help/formats.jsp

• Changed: dspace/jsp/layout/footer-default.jsp

• Changed: dspace/jsp/layout/header-default.jsp

• Changed: dspace/jsp/layout/navbar-admin.jsp

• Changed: dspace/jsp/layout/navbar-default.jsp

• Changed: dspace/jsp/login/password.jsp

• Changed: dspace/jsp/mydspace/main.jsp

• Changed: dspace/jsp/mydspace/perform-task.jsp

• Changed: dspace/jsp/mydspace/preview-task.jsp

• Changed: dspace/jsp/mydspace/reject-reason.jsp

• Changed: dspace/jsp/mydspace/remove-item.jsp

• Changed: dspace/jsp/register/edit-profile.jsp

• Changed: dspace/jsp/register/inactive-account.jsp

• Changed: dspace/jsp/register/new-password.jsp

DSpace System Documentation:
Version History

234

• Changed: dspace/jsp/register/registration-form.jsp

• Changed: dspace/jsp/search/advanced.jsp

• Changed: dspace/jsp/search/results.jsp

• Changed: dspace/jsp/submit/cancel.jsp

• New: dspace/jsp/submit/cc-license.jsp

• Changed: dspace/jsp/submit/choose-file.jsp

• New: dspace/jsp/submit/creative-commons.css

• New: dspace/jsp/submit/creative-commons.jsp

• Changed: dspace/jsp/submit/edit-metadata-1.jsp

• Changed: dspace/jsp/submit/edit-metadata-2.jsp

• Changed: dspace/jsp/submit/get-file-format.jsp

• Changed: dspace/jsp/submit/initial-questions.jsp

• Changed: dspace/jsp/submit/progressbar.jsp

• Changed: dspace/jsp/submit/review.jsp

• Changed: dspace/jsp/submit/select-collection.jsp

• Changed: dspace/jsp/submit/show-license.jsp

• Changed: dspace/jsp/submit/show-uploaded-file.jsp

• Changed: dspace/jsp/submit/upload-error.jsp

• Changed: dspace/jsp/submit/upload-file-list.jsp

• Changed: dspace/jsp/submit/verify-prune.jsp

• New: dspace/jsp/tools/edit-item-form.jsp

• New: dspace/jsp/tools/eperson-list.jsp

• New: dspace/jsp/tools/itemmap-browse.jsp

• New: dspace/jsp/tools/itemmap-info.jsp

• New: dspace/jsp/tools/itemmap-main.jsp

14.10. Changes in DSpace 1.1.1

14.10.1. Bug fixes
• non-administrators can now submit again

• installations now preserve file creation dates, eliminating confusion with upgrades

DSpace System Documentation:
Version History

235

• authorization editing pages no longer create null entries in database, and no longer handles them poorly (no longer
gives blank page instead of displaying policies.)

• registration page Invalid token error page now displayed when an invalid token is received (as opposed to internal
server error.) Fixes SF bug #739999

• eperson admin 'recent submission' links fixed for DSpaces deployed somewhere other than at / (e.g. /dspace).

• help pages Link to help pages now includes servlet context (e.g. '/dspace'). Fixes SF bug #738399.

14.10.2. Improvements
• bin/dspace-info.pl now checks jsp and asset store files for zero-length files

• make-release-package now works with SourceForge CVS

• eperson editor now doesn't display the spurious text 'null'

• item exporter now uses Jakarta's cli command line arg parser (much cleaner)

• item importer improvements:

• now uses Jakarta's cli command line arg parser (much cleaner)

• imported items can now be routed through a workflow

• more validation and error messages before import

• can now use email addresses and handles instead of just database IDs

• can import an item to a collection with the workflow suppressed

14.11. Changes in DSpace 1.1
• Fixed various OAI-related bugs; DSpace's OAI support should now be correct. Note that harvesting is now based

on the new Item 'last modified' date (as opposed to the Dublin Core date.available date.)

• Fixed Handle support--DSpace now responds to naming authority requests correctly.

• Multiple bitstream stores can now be specified; this allows DSpace storage to span several disks, and so there is
no longer a hard limit on storage.

• Search improvements:

• New fielded searching UI

• Search results are now paged

• Abstracts are indexed

• Better use of Lucene API; should stop the number of open file handles getting large

• Submission UI improvements:

• now insists on a title being specified

• fixed navigation on file upload page

DSpace System Documentation:
Version History

236

• citation & identifier fields for previously published submissions now fixed

• Many Unicode fixes to the database and Web user interface

• Collections can now be deleted

• Bitstream descriptions (if available) displayed on item display page

• Modified a couple of servlets to handle invalid parameters better (i.e. to report a suitable error message instead of
an internal server error)

• Item templates now work

• Fixed registration token expiration problem (they no longer expire.)

237

Chapter 15. DSpace System
Documentation: Appendices
15.1. Default Dublin Core Metadata Registry
Element Qualifier Scope Note

contributor A person, organization, or
service responsible for the
content of the resource.
Catch-all for unspecified
contributors.

contributor advisor Use primarily for thesis
advisor.

contributor¹ author

contributor editor

contributor illustrator

contributor other

coverage spatial Spatial characteristics of
content.

coverage temporal Temporal characteristics of
content.

creator Do not use; only for
harvested metadata.

date Use qualified form if
possible.

date¹ accessioned Date DSpace takes
possession of item.

date¹ available Date or date range item
became available to the
public.

date copyright Date of copyright.

date created Date of creation or
manufacture of intellectual
content if different from
date.issued.

date¹ issued Date of publication or
distribution.

date submitted Recommend for theses/
dissertations.

identifier Catch-all for unambiguous
identifiers not defined
by qualified form; use
identifier.other for a known
identifier common to a

DSpace System
Documentation: Appendices

238

local collection instead of
unqualified form.

identifier¹ citation Human-readable, standard
bibliographic citation of
non-DSpace format of this
item

identifier¹ govdoc A government document
number

identifier¹ isbn International Standard Book
Number

identifier¹ issn International Standard
Serial Number

identifier sici Serial Item and Contribution
Identifier

identifier¹ ismn International Standard
Music Number

identifier¹ other A known identifier type
common to a local
collection.

identifier¹ uri Uniform Resource Identifier

description¹ Catch-all for any description
not defined by qualifiers.

description¹ abstract Abstract or summary.

description¹ provenance The history of custody of
the item since its creation,
including any changes
successive custodians made
to it.

description¹ sponsorship Information about
sponsoring agencies,
individuals, or contractual
arrangements for the item.

description statementofresponsibility To preserve statement of
responsibility from MARC
records.

description tableofcontents A table of contents for a
given item.

description uri Uniform Resource Identifier
pointing to description of
this item.

format¹ Catch-all for any format
information not defined by
qualifiers.

format¹ extent Size or duration.

format medium Physical medium.

format¹ mimetype

DSpace System
Documentation: Appendices

239

Registered MIME type
identifiers.

language Catch-all for non-ISO forms
of the language of the item,
accommodating harvested
values.

language¹ iso Current ISO standard for
language of intellectual
content, including country
codes (e.g. "en_US").

publisher¹ Entity responsible for
publication, distribution, or
imprint.

relation Catch-all for references to
other related items.

relation isformatof References additional
physical form.

relation ispartof References physically or
logically containing item.

relation¹ ispartofseries Series name and number
within that series, if
available.

relation haspart References physically or
logically contained item.

relation isversionof References earlier version.

relation hasversion References later version.

relation isbasedon References source.

relation isreferencedby Pointed to by referenced
resource.

relation requires Referenced resource is
required to support function,
delivery, or coherence of
item.

relation replaces References preceeding item.

relation isreplacedby References succeeding item.

relation uri References Uniform
Resource Identifier for
related item.

rights Terms governing use and
reproduction.

rights uri References terms governing
use and reproduction.

source Do not use; only for
harvested metadata.

source uri Do not use; only for
harvested metadata.

DSpace System
Documentation: Appendices

240

subject¹ Uncontrolled index term.

subject classification Catch-all for value from
local classification system.
Global classification
systems will receive specific
qualifier

subject ddc Dewey Decimal
Classification Number

subject lcc Library of Congress
Classification Number

subject lcsh Library of Congress Subject
Headings

subject mesh MEdical Subject Headings

subject other Local controlled
vocabulary; global
vocabularies will receive
specific qualifier.

title¹ Title statement/title proper.

title¹ alternative Varying (or substitute) form
of title proper appearing in
item, e.g. abbreviation or
translation

type¹ Nature or genre of content.

¹Used by system: do not remove

15.2. Default Bitstream Format Registry
Mimetype Short

Description
Description Support Level Internal Extensions

application/octet-
stream¹

Unknown Unknown data
format

Unknown false

text/plain¹ License Item-specific
license agreed
upon to
submission

Known true

application/marc MARC Machine-
Readable
Cataloging
records

Known false

application/
mathematica

Mathematica Mathematica
Notebook

Known false ma

application/
msword

Microsoft Word Microsoft Word Known false doc

application/pdf Adobe PDF Adobe Portable
Document Format

Known false pdf

DSpace System
Documentation: Appendices

241

application/
postscript

Postscript Postscript Files Known false ai, eps, ps

application/sgml SGML SGML
application (RFC
1874)

Known false sgm, sgml

application/
vnd.ms-excel

Microsoft Excel Microsoft Excel Known false xls

application/
vnd.ms-
powerpoint

Microsoft
Powerpoint

Microsoft
Powerpoint

Known false ppt

application/
vnd.ms-project

Microsoft Project Microsoft Project Known false mpd, mpp, mpx

application/
vnd.visio

Microsoft Visio Microsoft Visio Known false vsd

application/
wordperfect5.1

WordPerfect WordPerfect 5.1
document

Known false wpd

application/x-dvi TeX dvi TeX dvi format Known false dvi

application/x-
filemaker

FMP3 Filemaker Pro Known false fm

application/x-
latex

LateX LaTeX document Known false latex

application/x-
photoshop

Photoshop Photoshop Known false pdd, psd

application/x-tex TeX Tex/LateX
document

Known false tex

audio/basic audio/basic Basic Audio Known false au, snd

audio/x-aiff AIFF Audio
Interchange File
Format

Known false aif, aifc, aiff

audio/x-mpeg MPEG Audio MPEG Audio Known false abs, mpa, mpega

audio/x-pn-
realaudio

RealAudio RealAudio file Known false ra, ram

audio/x-wav WAV Broadcase Wave
Format

Known false wav

image/gif GIF Graphics
Interchange
Format

Known false gif

image/jpeg JPEG Joint
Photographic
Experts Group/
JPEG File
Interchange
Format (JFIF)

Known false jpeg, jpg

image/png image/png Portable Network
Graphics

Known false png

DSpace System
Documentation: Appendices

242

image/tiff TIFF Tag Image File
Format

Known false tif, tiff

image/x-ms-bmp BMP Microsoft
Windows bitmap

Known false bmp

image/x-photo-cd Photo CD Kodak Photo CD
image

Known false pcd

text/css CSS Cascading Style
Sheets

Known false css

text/html HTML Hypertext Markup
Language

Known false htm, html

text/plain Text Plain Text Known false asc, txt

text/richtext RTF Rich Text Format Known false rtf

text/xml XML Extensible
Markup Language

Known false xml

video/mpeg MPEG Moving Picture
Experts Group

Known false mpe, mpeg, mpg

video/quicktime Video Quicktime Video Quicktime Known false mov, qt

¹ Used by system: do not remove

243

Index

