mirror of
https://github.com/jupyter/docker-stacks.git
synced 2025-10-18 15:32:56 +00:00
Fix codestyle
This commit is contained in:
@@ -309,11 +309,11 @@ See the [contributing guide](../contributing/stacks.md) for information about ho
|
||||
|
||||
### GPU-accelerated notebooks
|
||||
|
||||
| Flavor | Description |
|
||||
| ------------------ | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| Flavor | Description |
|
||||
| ------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| [GPU-Jupyter][gpu] | Power of your NVIDIA GPU and GPU calculations using Tensorflow and Pytorch in collaborative notebooks. This is done by generating a Dockerfile that consists of the **nvidia/cuda** base image, the well-maintained **docker-stacks** that is integrated as a submodule, and GPU-able libraries like **Tensorflow**, **Keras** and **PyTorch** on top of it. |
|
||||
| [PRP-GPU][prp_gpu] | PRP (Pacific Research Platform) maintained [registry][prp_reg] for jupyter stack based on NVIDIA CUDA-enabled image. Added the PRP image with Pytorch and some other Python packages and GUI Desktop notebook based on <https://github.com/jupyterhub/jupyter-remote-desktop-proxy>. |
|
||||
| [b-data][b-data] | GPU accelerated, multi-arch (`linux/amd64`, `linux/arm64/v8`) docker images for [R][r_cuda], [Python][python_cuda] and [Julia][julia_cuda]. Derived from nvidia/cuda `devel`-flavored images, including TensortRT and TensorRT plugin libraries. With [code-server][code-server] next to JupyterLab. Just Python – no [Conda][conda]/[Mamba][mamba]. |
|
||||
| [PRP-GPU][prp_gpu] | PRP (Pacific Research Platform) maintained [registry][prp_reg] for jupyter stack based on NVIDIA CUDA-enabled image. Added the PRP image with Pytorch and some other Python packages and GUI Desktop notebook based on <https://github.com/jupyterhub/jupyter-remote-desktop-proxy>. |
|
||||
| [b-data][b-data] | GPU accelerated, multi-arch (`linux/amd64`, `linux/arm64/v8`) docker images for [R][r_cuda], [Python][python_cuda] and [Julia][julia_cuda]. Derived from nvidia/cuda `devel`-flavored images, including TensortRT and TensorRT plugin libraries. With [code-server][code-server] next to JupyterLab. Just Python – no [Conda][conda]/[Mamba][mamba]. |
|
||||
|
||||
[gpu]: https://github.com/iot-salzburg/gpu-jupyter
|
||||
[prp_gpu]: https://gitlab.nrp-nautilus.io/prp/jupyter-stack/-/tree/prp
|
||||
|
Reference in New Issue
Block a user