# Copyright (c) Jupyter Development Team. # Distributed under the terms of the Modified BSD License. import logging from pathlib import Path import pytest # type: ignore from tests.utils.tracked_container import TrackedContainer LOGGER = logging.getLogger(__name__) THIS_DIR = Path(__file__).parent.resolve() @pytest.mark.flaky(retries=3, delay=1) @pytest.mark.parametrize( "test_file", ["issue_1168", "local_pyspark", "local_sparkR"], ) def test_nbconvert(container: TrackedContainer, test_file: str) -> None: """Check if Spark notebooks can be executed""" host_data_dir = THIS_DIR / "data" cont_data_dir = "/home/jovyan/data" output_dir = "/tmp" conversion_timeout_ms = 5000 LOGGER.info(f"Test that {test_file} notebook can be executed ...") command = ( "jupyter nbconvert --to markdown " + f"--ExecutePreprocessor.timeout={conversion_timeout_ms} " + f"--output-dir {output_dir} " + f"--execute {cont_data_dir}/{test_file}.ipynb" ) logs = container.run_and_wait( timeout=60, no_warnings=False, volumes={str(host_data_dir): {"bind": cont_data_dir, "mode": "ro"}}, tty=True, command=["bash", "-c", command], ) warnings = TrackedContainer.get_warnings(logs) assert len(warnings) == 1 assert "Using incubator modules: jdk.incubator.vector" in warnings[0] expected_file = f"{output_dir}/{test_file}.md" assert expected_file in logs, f"Expected file {expected_file} not generated"