# Image Specifics This page provides details about features specific to one or more images. ## Apache Sparkā„¢ ### Specific Docker Image Options * `-p 4040:4040` - The `jupyter/pyspark-notebook` and `jupyter/all-spark-notebook` images open [SparkUI (Spark Monitoring and Instrumentation UI)](http://spark.apache.org/docs/latest/monitoring.html) at default port `4040`, this option map `4040` port inside docker container to `4040` port on host machine . Note every new spark context that is created is put onto an incrementing port (ie. 4040, 4041, 4042, etc.), and it might be necessary to open multiple ports. For example: `docker run -d -p 8888:8888 -p 4040:4040 -p 4041:4041 jupyter/pyspark-notebook`. ### Build an Image with a Different Version of Spark You can build a `pyspark-notebook` image (and also the downstream `all-spark-notebook` image) with a different version of Spark by overriding the default value of the following arguments at build time. * Spark distribution is defined by the combination of the Spark and the Hadoop version and verified by the package checksum, see [Download Apache Spark](https://spark.apache.org/downloads.html) for more information. * `spark_version`: The Spark version to install (`3.0.0`). * `hadoop_version`: The Hadoop version (`3.2`). * `spark_checksum`: The package checksum (`BFE4540...`). * Spark is shipped with a version of Py4J that has to be referenced in the `PYTHONPATH`. * `py4j_version`: The Py4J version (`0.10.9`), see the tip below. * Spark can run with different OpenJDK versions. * `openjdk_version`: The version of (JRE headless) the OpenJDK distribution (`11`), see [Ubuntu packages](https://packages.ubuntu.com/search?keywords=openjdk). For example here is how to build a `pyspark-notebook` image with Spark `2.4.6`, Hadoop `2.7` and OpenJDK `8`. ```bash # From the root of the project # Build the image with different arguments docker build --rm --force-rm \ -t jupyter/pyspark-notebook:spark-2.4.6 ./pyspark-notebook \ --build-arg spark_version=2.4.6 \ --build-arg hadoop_version=2.7 \ --build-arg spark_checksum=3A9F401EDA9B5749CDAFD246B1D14219229C26387017791C345A23A65782FB8B25A302BF4AC1ED7C16A1FE83108E94E55DAD9639A51C751D81C8C0534A4A9641 \ --build-arg openjdk_version=8 \ --build-arg py4j_version=0.10.7 # Check the newly built image docker images jupyter/pyspark-notebook:spark-2.4.6 # REPOSITORY TAG IMAGE ID CREATED SIZE # jupyter/pyspark-notebook spark-2.4.6 7ad7b5a9dbcd 4 minutes ago 3.44GB # Check the Spark version docker run -it --rm jupyter/pyspark-notebook:spark-2.4.6 pyspark --version # Welcome to # ____ __ # / __/__ ___ _____/ /__ # _\ \/ _ \/ _ `/ __/ '_/ # /___/ .__/\_,_/_/ /_/\_\ version 2.4.6 # /_/ # # Using Scala version 2.11.12, OpenJDK 64-Bit Server VM, 1.8.0_265 ``` **Tip**: to get the version of Py4J shipped with Spark: * Build a first image without changing `py4j_version` (it will not prevent the image to build it will just prevent Python to find the `pyspark` module), * get the version (`ls /usr/local/spark/python/lib/`), * set the version `--build-arg py4j_version=0.10.7`. *Note: At the time of writing there is an issue preventing to use Spark `2.4.6` with Python `3.8`, see [this answer on SO](https://stackoverflow.com/a/62173969/4413446) for more information.* ```bash docker run -it --rm jupyter/pyspark-notebook:spark-2.4.6 ls /usr/local/spark/python/lib/ # py4j-0.10.7-src.zip PY4J_LICENSE.txt pyspark.zip # You can now set the build-arg # --build-arg py4j_version= ``` ### Usage Examples The `jupyter/pyspark-notebook` and `jupyter/all-spark-notebook` images support the use of [Apache Spark](https://spark.apache.org/) in Python, R, and Scala notebooks. The following sections provide some examples of how to get started using them. #### Using Spark Local Mode Spark **local mode** is useful for experimentation on small data when you do not have a Spark cluster available. ##### In Python In a Python notebook. ```python from pyspark.sql import SparkSession # Spark session & context spark = SparkSession.builder.master('local').getOrCreate() sc = spark.sparkContext # Sum of the first 100 whole numbers rdd = sc.parallelize(range(100 + 1)) rdd.sum() # 5050 ``` ##### In R In a R notebook with [SparkR][sparkr]. ```R library(SparkR) # Spark session & context sc <- sparkR.session("local") # Sum of the first 100 whole numbers sdf <- createDataFrame(list(1:100)) dapplyCollect(sdf, function(x) { x <- sum(x)} ) # 5050 ``` In a R notebook with [sparklyr][sparklyr]. ```R library(sparklyr) # Spark configuration conf <- spark_config() # Set the catalog implementation in-memory conf$spark.sql.catalogImplementation <- "in-memory" # Spark session & context sc <- spark_connect(master = "local", config = conf) # Sum of the first 100 whole numbers sdf_len(sc, 100, repartition = 1) %>% spark_apply(function(e) sum(e)) # 5050 ``` ##### In Scala Spylon kernel instantiates a `SparkContext` for you in variable `sc` after you configure Spark options in a `%%init_spark` magic cell. ```python %%init_spark # Configure Spark to use a local master launcher.master = "local" ``` ```scala // Sum of the first 100 whole numbers val rdd = sc.parallelize(0 to 100) rdd.sum() // 5050 ``` #### Connecting to a Spark Cluster in Standalone Mode Connection to Spark Cluster on **[Standalone Mode](https://spark.apache.org/docs/latest/spark-standalone.html)** requires the following set of steps: 0. Verify that the docker image (check the Dockerfile) and the Spark Cluster which is being deployed, run the same version of Spark. 1. [Deploy Spark in Standalone Mode](http://spark.apache.org/docs/latest/spark-standalone.html). 2. Run the Docker container with `--net=host` in a location that is network addressable by all of your Spark workers. (This is a [Spark networking requirement](http://spark.apache.org/docs/latest/cluster-overview.html#components).) * NOTE: When using `--net=host`, you must also use the flags `--pid=host -e TINI_SUBREAPER=true`. See https://github.com/jupyter/docker-stacks/issues/64 for details. **Note**: In the following examples we are using the Spark master URL `spark://master:7077` that shall be replaced by the URL of the Spark master. ##### In Python The **same Python version** need to be used on the notebook (where the driver is located) and on the Spark workers. The python version used at driver and worker side can be adjusted by setting the environment variables `PYSPARK_PYTHON` and / or `PYSPARK_DRIVER_PYTHON`, see [Spark Configuration][spark-conf] for more information. ```python from pyspark.sql import SparkSession # Spark session & context spark = SparkSession.builder.master('spark://master:7077').getOrCreate() sc = spark.sparkContext # Sum of the first 100 whole numbers rdd = sc.parallelize(range(100 + 1)) rdd.sum() # 5050 ``` ##### In R In a R notebook with [SparkR][sparkr]. ```R library(SparkR) # Spark session & context sc <- sparkR.session("spark://master:7077") # Sum of the first 100 whole numbers sdf <- createDataFrame(list(1:100)) dapplyCollect(sdf, function(x) { x <- sum(x)} ) # 5050 ``` In a R notebook with [sparklyr][sparklyr]. ```R library(sparklyr) # Spark session & context # Spark configuration conf <- spark_config() # Set the catalog implementation in-memory conf$spark.sql.catalogImplementation <- "in-memory" sc <- spark_connect(master = "spark://master:7077", config = conf) # Sum of the first 100 whole numbers sdf_len(sc, 100, repartition = 1) %>% spark_apply(function(e) sum(e)) # 5050 ``` ##### In Scala Spylon kernel instantiates a `SparkContext` for you in variable `sc` after you configure Spark options in a `%%init_spark` magic cell. ```python %%init_spark # Configure Spark to use a local master launcher.master = "spark://master:7077" ``` ```scala // Sum of the first 100 whole numbers val rdd = sc.parallelize(0 to 100) rdd.sum() // 5050 ``` ## Tensorflow The `jupyter/tensorflow-notebook` image supports the use of [Tensorflow](https://www.tensorflow.org/) in single machine or distributed mode. ### Single Machine Mode ```python import tensorflow as tf hello = tf.Variable('Hello World!') sess = tf.Session() init = tf.global_variables_initializer() sess.run(init) sess.run(hello) ``` ### Distributed Mode ```python import tensorflow as tf hello = tf.Variable('Hello Distributed World!') server = tf.train.Server.create_local_server() sess = tf.Session(server.target) init = tf.global_variables_initializer() sess.run(init) sess.run(hello) ``` [sparkr]: https://spark.apache.org/docs/latest/sparkr.html [sparklyr]: https://spark.rstudio.com/ [spark-conf]: https://spark.apache.org/docs/latest/configuration.html