# Copyright (c) Jupyter Development Team. # Distributed under the terms of the Modified BSD License. ARG REGISTRY=quay.io ARG OWNER=jupyter ARG BASE_IMAGE=$REGISTRY/$OWNER/scipy-notebook FROM $BASE_IMAGE LABEL maintainer="Jupyter Project " # Fix: https://github.com/hadolint/hadolint/wiki/DL4006 # Fix: https://github.com/koalaman/shellcheck/wiki/SC3014 SHELL ["/bin/bash", "-o", "pipefail", "-c"] USER root # Spark dependencies # Default values can be overridden at build time # (ARGS are in lowercase to distinguish them from ENV) ARG openjdk_version="17" RUN apt-get update --yes && \ apt-get install --yes --no-install-recommends \ "openjdk-${openjdk_version}-jre-headless" \ ca-certificates-java && \ apt-get clean && rm -rf /var/lib/apt/lists/* # If spark_version is not set, latest Spark will be installed ARG spark_version ARG hadoop_version="3" # If scala_version is not set, Spark without Scala will be installed ARG scala_version # URL to use for Spark downloads # You need to use https://archive.apache.org/dist/spark/ website if you want to download old Spark versions # But it seems to be slower, that's why we use the recommended site for download ARG spark_download_url="https://dlcdn.apache.org/spark/" ENV SPARK_HOME=/usr/local/spark ENV PATH="${PATH}:${SPARK_HOME}/bin" ENV SPARK_OPTS="--driver-java-options=-Xms1024M --driver-java-options=-Xmx4096M --driver-java-options=-Dlog4j.logLevel=info" COPY setup_spark.py /opt/setup-scripts/ # Setup Spark RUN /opt/setup-scripts/setup_spark.py \ --spark-version="${spark_version}" \ --hadoop-version="${hadoop_version}" \ --scala-version="${scala_version}" \ --spark-download-url="${spark_download_url}" # Configure IPython system-wide COPY ipython_kernel_config.py "/etc/ipython/" RUN fix-permissions "/etc/ipython/" # macOS Rosetta virtualization creates junk directory which gets owned by root further up. # It'll get re-created, but as USER runner after the next directive so hopefully should not cause permission issues. # # More info: https://github.com/jupyter/docker-stacks/issues/2296 # hadolint ignore=DL3059 RUN rm -rf "/home/${NB_USER}/.cache/" USER ${NB_UID} # Install pyarrow # NOTE: It's important to ensure compatibility between Pandas versions. # The pandas version in this Dockerfile should match the version # on which the Pandas API for Spark is built. # To find the right version, check the pandas version being installed here: # https://github.com/apache/spark/blob//dev/infra/Dockerfile RUN mamba install --yes \ 'grpcio-status' \ 'grpcio' \ 'pandas=2.2.3' \ 'pyarrow' && \ mamba clean --all -f -y && \ fix-permissions "${CONDA_DIR}" && \ fix-permissions "/home/${NB_USER}" WORKDIR "${HOME}" EXPOSE 4040