mirror of
https://github.com/jupyter/docker-stacks.git
synced 2025-10-09 19:12:59 +00:00
617 lines
22 KiB
Markdown
617 lines
22 KiB
Markdown
# Contributed Recipes
|
|
|
|
Users sometimes share interesting ways of using the Jupyter Docker Stacks.
|
|
We encourage users to [contribute these recipes](../contributing/recipes.md) to the documentation in case they prove helpful to other community members by submitting a pull request to `docs/using/recipes.md`.
|
|
The sections below capture this knowledge.
|
|
|
|
## Using `sudo` within a container
|
|
|
|
Password authentication is disabled for the `NB_USER` (e.g., `jovyan`).
|
|
We made this choice to avoid distributing images with a weak default password that users ~might~ will forget to change before running a container on a publicly accessible host.
|
|
|
|
You can grant the within-container `NB_USER` passwordless `sudo` access by adding `--user root` and `-e GRANT_SUDO=yes` to your Docker command line or appropriate container orchestrator config.
|
|
|
|
For example:
|
|
|
|
```bash
|
|
docker run -it --rm \
|
|
--user root \
|
|
-e GRANT_SUDO=yes \
|
|
jupyter/minimal-notebook
|
|
```
|
|
|
|
**You should only enable `sudo` if you trust the user and/or if the container is running on an isolated host.**
|
|
See [Docker security documentation](https://docs.docker.com/engine/security/userns-remap/) for more information about running containers as `root`.
|
|
|
|
## Using `mamba install` or `pip install` in a Child Docker image
|
|
|
|
Create a new Dockerfile like the one shown below.
|
|
|
|
```dockerfile
|
|
# Start from a core stack version
|
|
FROM jupyter/datascience-notebook:2023-02-28
|
|
# Install in the default python3 environment
|
|
RUN pip install --no-cache-dir 'flake8==3.9.2' && \
|
|
fix-permissions "${CONDA_DIR}" && \
|
|
fix-permissions "/home/${NB_USER}"
|
|
```
|
|
|
|
Then build a new image.
|
|
|
|
```bash
|
|
docker build --rm -t jupyter/my-datascience-notebook .
|
|
```
|
|
|
|
To use a requirements.txt file, first, create your `requirements.txt` file with the listing of
|
|
packages desired.
|
|
Next, create a new Dockerfile like the one shown below.
|
|
|
|
```dockerfile
|
|
# Start from a core stack version
|
|
FROM jupyter/datascience-notebook:2023-02-28
|
|
# Install from the requirements.txt file
|
|
COPY --chown=${NB_UID}:${NB_GID} requirements.txt /tmp/
|
|
RUN pip install --no-cache-dir --requirement /tmp/requirements.txt && \
|
|
fix-permissions "${CONDA_DIR}" && \
|
|
fix-permissions "/home/${NB_USER}"
|
|
```
|
|
|
|
For conda, the Dockerfile is similar:
|
|
|
|
```dockerfile
|
|
# Start from a core stack version
|
|
FROM jupyter/datascience-notebook:2023-02-28
|
|
# Install from the requirements.txt file
|
|
COPY --chown=${NB_UID}:${NB_GID} requirements.txt /tmp/
|
|
RUN mamba install --yes --file /tmp/requirements.txt && \
|
|
mamba clean --all -f -y && \
|
|
fix-permissions "${CONDA_DIR}" && \
|
|
fix-permissions "/home/${NB_USER}"
|
|
```
|
|
|
|
Ref: [docker-stacks/commit/79169618d571506304934a7b29039085e77db78c](https://github.com/jupyter/docker-stacks/commit/79169618d571506304934a7b29039085e77db78c#r15960081)
|
|
|
|
## Add a custom conda environment and Jupyter kernel
|
|
|
|
The default version of Python that ships with the image may not be the version you want.
|
|
The instructions below permit adding a conda environment with a different Python version and making it accessible to Jupyter.
|
|
|
|
```dockerfile
|
|
# Choose your desired base image
|
|
FROM jupyter/minimal-notebook:latest
|
|
|
|
# name your environment and choose the python version
|
|
ARG conda_env=python37
|
|
ARG py_ver=3.7
|
|
|
|
# you can add additional libraries you want mamba to install by listing them below the first line and ending with "&& \"
|
|
RUN mamba create --yes -p "${CONDA_DIR}/envs/${conda_env}" python=${py_ver} ipython ipykernel && \
|
|
mamba clean --all -f -y
|
|
|
|
# alternatively, you can comment out the lines above and uncomment those below
|
|
# if you'd prefer to use a YAML file present in the docker build context
|
|
|
|
# COPY --chown=${NB_UID}:${NB_GID} environment.yml "/home/${NB_USER}/tmp/"
|
|
# RUN cd "/home/${NB_USER}/tmp/" && \
|
|
# mamba env create -p "${CONDA_DIR}/envs/${conda_env}" -f environment.yml && \
|
|
# mamba clean --all -f -y
|
|
|
|
# create Python kernel and link it to jupyter
|
|
RUN "${CONDA_DIR}/envs/${conda_env}/bin/python" -m ipykernel install --user --name="${conda_env}" && \
|
|
fix-permissions "${CONDA_DIR}" && \
|
|
fix-permissions "/home/${NB_USER}"
|
|
|
|
# any additional pip installs can be added by uncommenting the following line
|
|
# RUN "${CONDA_DIR}/envs/${conda_env}/bin/pip" install --no-cache-dir
|
|
|
|
# if you want this environment to be the default one, uncomment the following line:
|
|
# RUN echo "conda activate ${conda_env}" >> "${HOME}/.bashrc"
|
|
```
|
|
|
|
## Dask JupyterLab Extension
|
|
|
|
[Dask JupyterLab Extension](https://github.com/dask/dask-labextension) provides a JupyterLab extension to manage Dask clusters, as well as embed Dask's dashboard plots directly into JupyterLab panes.
|
|
Create the Dockerfile as:
|
|
|
|
```dockerfile
|
|
# Start from a core stack version
|
|
FROM jupyter/scipy-notebook:latest
|
|
|
|
# Install the Dask dashboard
|
|
RUN pip install --no-cache-dir dask-labextension && \
|
|
fix-permissions "${CONDA_DIR}" && \
|
|
fix-permissions "/home/${NB_USER}"
|
|
|
|
# Dask Scheduler & Bokeh ports
|
|
EXPOSE 8787
|
|
EXPOSE 8786
|
|
|
|
ENTRYPOINT ["jupyter", "lab", "--ip=0.0.0.0", "--allow-root"]
|
|
```
|
|
|
|
And build the image as:
|
|
|
|
```bash
|
|
docker build -t jupyter/scipy-dasklabextension:latest .
|
|
```
|
|
|
|
Once built, run using the command:
|
|
|
|
```bash
|
|
docker run -it --rm \
|
|
-p 8888:8888 \
|
|
-p 8787:8787 jupyter/scipy-dasklabextension:latest
|
|
```
|
|
|
|
Ref: <https://github.com/jupyter/docker-stacks/issues/999>
|
|
|
|
## Let's Encrypt a Notebook server
|
|
|
|
See the README for a basic automation here
|
|
<https://github.com/jupyter/docker-stacks/tree/main/examples/make-deploy>
|
|
which includes steps for requesting and renewing a Let's Encrypt certificate.
|
|
|
|
Ref: <https://github.com/jupyter/docker-stacks/issues/78>
|
|
|
|
## Slideshows with Jupyter and RISE
|
|
|
|
[RISE](https://github.com/damianavila/RISE) allows via an extension to create live slideshows of your
|
|
notebooks, with no conversion, adding javascript Reveal.js:
|
|
|
|
```bash
|
|
# Add Live slideshows with RISE
|
|
RUN mamba install --yes -c damianavila82 rise && \
|
|
mamba clean --all -f -y && \
|
|
fix-permissions "${CONDA_DIR}" && \
|
|
fix-permissions "/home/${NB_USER}"
|
|
```
|
|
|
|
Credit: [Paolo D.](https://github.com/pdonorio) based on
|
|
[docker-stacks/issues/43](https://github.com/jupyter/docker-stacks/issues/43)
|
|
|
|
## xgboost
|
|
|
|
You need to install conda-forge's gcc for Python xgboost to work correctly.
|
|
Otherwise, you'll get an exception about libgomp.so.1 missing GOMP_4.0.
|
|
|
|
```bash
|
|
mamba install --yes gcc && \
|
|
mamba clean --all -f -y && \
|
|
fix-permissions "${CONDA_DIR}" && \
|
|
fix-permissions "/home/${NB_USER}"
|
|
|
|
pip install --no-cache-dir xgboost && \
|
|
fix-permissions "${CONDA_DIR}" && \
|
|
fix-permissions "/home/${NB_USER}"
|
|
|
|
# run "import xgboost" in python
|
|
```
|
|
|
|
## Running behind an nginx proxy
|
|
|
|
Sometimes it is helpful to run the Jupyter instance behind an nginx proxy, for example:
|
|
|
|
- you would prefer to access the notebook at a server URL with a path
|
|
(`https://example.com/jupyter`) rather than a port (`https://example.com:8888`)
|
|
- you may have many services in addition to Jupyter running on the same server
|
|
and want nginx to help improve server performance in managing the connections
|
|
|
|
Here is a [quick example of NGINX configuration](https://gist.github.com/cboettig/8643341bd3c93b62b5c2) to get started.
|
|
You'll need a server, a `.crt` and `.key` file for your server, and `docker` & `docker-compose` installed.
|
|
Then download the files at that gist and run `docker-compose up -d` to test it out.
|
|
Customize the `nginx.conf` file to set the desired paths and add other services.
|
|
|
|
## Host volume mounts and notebook errors
|
|
|
|
If you are mounting a host directory as `/home/jovyan/work` in your container,
|
|
and you receive permission errors or connection errors when you create a notebook,
|
|
be sure that the `jovyan` user (`UID=1000` by default) has read/write access to the directory on the host.
|
|
Alternatively, specify the UID of the `jovyan` user on container startup using the `-e NB_UID` option
|
|
described in the [Common Features, Docker Options section](common.md#docker-options)
|
|
|
|
Ref: <https://github.com/jupyter/docker-stacks/issues/199>
|
|
|
|
## Manpage installation
|
|
|
|
Most containers, including our Ubuntu base image, ship without manpages installed to save space.
|
|
You can use the following Dockerfile to inherit from one of our images to enable manpages:
|
|
|
|
```dockerfile
|
|
# Choose your desired base image
|
|
ARG BASE_CONTAINER=jupyter/datascience-notebook:latest
|
|
FROM $BASE_CONTAINER
|
|
|
|
USER root
|
|
|
|
# `/etc/dpkg/dpkg.cfg.d/excludes` contains several `path-exclude`s, including man pages
|
|
# Remove it, then install man, install docs
|
|
RUN rm /etc/dpkg/dpkg.cfg.d/excludes && \
|
|
apt-get update --yes && \
|
|
dpkg -l | grep ^ii | cut -d' ' -f3 | xargs apt-get install --yes --no-install-recommends --reinstall man && \
|
|
apt-get clean && rm -rf /var/lib/apt/lists/*
|
|
|
|
USER ${NB_UID}
|
|
```
|
|
|
|
Adding the documentation on top of the existing single-user image wastes a lot of space
|
|
and requires reinstalling every system package,
|
|
which can take additional time and bandwidth.
|
|
The `datascience-notebook` image has been shown to grow by almost 3GB when adding manpages in this way.
|
|
Enabling manpages in the base Ubuntu layer prevents this container bloat.
|
|
To achieve this, use the previous `Dockerfile`'s commands with the original `ubuntu` image as your base container:
|
|
|
|
```dockerfile
|
|
ARG BASE_CONTAINER=ubuntu:22.04
|
|
```
|
|
|
|
For Ubuntu 18.04 (bionic) and earlier, you may also require to a workaround for a mandb bug, which was fixed in mandb >= 2.8.6.1:
|
|
|
|
```dockerfile
|
|
# https://git.savannah.gnu.org/cgit/man-db.git/commit/?id=8197d7824f814c5d4b992b4c8730b5b0f7ec589a
|
|
# https://launchpadlibrarian.net/435841763/man-db_2.8.5-2_2.8.6-1.diff.gz
|
|
|
|
RUN echo "MANPATH_MAP ${CONDA_DIR}/bin ${CONDA_DIR}/man" >> /etc/manpath.config && \
|
|
echo "MANPATH_MAP ${CONDA_DIR}/bin ${CONDA_DIR}/share/man" >> /etc/manpath.config && \
|
|
mandb
|
|
```
|
|
|
|
Be sure to check the current base image in `base-notebook` before building.
|
|
|
|
## JupyterHub
|
|
|
|
We also have contributed recipes for using JupyterHub.
|
|
|
|
### Use JupyterHub's dockerspawner
|
|
|
|
In most cases for use with DockerSpawner, given an image that already has a notebook stack set up,
|
|
you would only need to add:
|
|
|
|
1. install the jupyterhub-singleuser script (for the correct Python version)
|
|
2. change the command to launch the single-user server
|
|
|
|
Swapping out the `FROM` line in the `jupyterhub/singleuser` Dockerfile should be enough for most
|
|
cases.
|
|
|
|
Credit: [Justin Tyberg](https://github.com/jtyberg), [quanghoc](https://github.com/quanghoc), and
|
|
[Min RK](https://github.com/minrk) based on
|
|
[docker-stacks/issues/124](https://github.com/jupyter/docker-stacks/issues/124) and
|
|
[docker-stacks/pull/185](https://github.com/jupyter/docker-stacks/pull/185)
|
|
|
|
### Containers with a specific version of JupyterHub
|
|
|
|
To use a specific version of JupyterHub, the version of `jupyterhub` in your image should match the
|
|
version in the Hub itself.
|
|
|
|
```dockerfile
|
|
FROM jupyter/base-notebook:2023-02-28
|
|
RUN pip install --no-cache-dir jupyterhub==1.4.1 && \
|
|
fix-permissions "${CONDA_DIR}" && \
|
|
fix-permissions "/home/${NB_USER}"
|
|
```
|
|
|
|
Credit: [MinRK](https://github.com/jupyter/docker-stacks/issues/423#issuecomment-322767742)
|
|
|
|
Ref: <https://github.com/jupyter/docker-stacks/issues/177>
|
|
|
|
## Spark
|
|
|
|
A few suggestions have been made regarding using Docker Stacks with spark.
|
|
|
|
### Using PySpark with AWS S3
|
|
|
|
Using Spark session for Hadoop 2.7.3
|
|
|
|
```python
|
|
import os
|
|
|
|
# !ls /usr/local/spark/jars/hadoop* # to figure out what version of Hadoop
|
|
os.environ[
|
|
"PYSPARK_SUBMIT_ARGS"
|
|
] = '--packages "org.apache.hadoop:hadoop-aws:2.7.3" pyspark-shell'
|
|
|
|
import pyspark
|
|
|
|
myAccessKey = input()
|
|
mySecretKey = input()
|
|
|
|
spark = (
|
|
pyspark.sql.SparkSession.builder.master("local[*]")
|
|
.config("spark.hadoop.fs.s3a.access.key", myAccessKey)
|
|
.config("spark.hadoop.fs.s3a.secret.key", mySecretKey)
|
|
.getOrCreate()
|
|
)
|
|
|
|
df = spark.read.parquet("s3://myBucket/myKey")
|
|
```
|
|
|
|
Using Spark context for Hadoop 2.6.0
|
|
|
|
```python
|
|
import os
|
|
|
|
os.environ[
|
|
"PYSPARK_SUBMIT_ARGS"
|
|
] = "--packages com.amazonaws:aws-java-sdk:1.10.34,org.apache.hadoop:hadoop-aws:2.6.0 pyspark-shell"
|
|
|
|
import pyspark
|
|
|
|
sc = pyspark.SparkContext("local[*]")
|
|
|
|
from pyspark.sql import SQLContext
|
|
|
|
sqlContext = SQLContext(sc)
|
|
|
|
hadoopConf = sc._jsc.hadoopConfiguration()
|
|
myAccessKey = input()
|
|
mySecretKey = input()
|
|
hadoopConf.set("fs.s3.impl", "org.apache.hadoop.fs.s3native.NativeS3FileSystem")
|
|
hadoopConf.set("fs.s3.awsAccessKeyId", myAccessKey)
|
|
hadoopConf.set("fs.s3.awsSecretAccessKey", mySecretKey)
|
|
|
|
df = sqlContext.read.parquet("s3://myBucket/myKey")
|
|
```
|
|
|
|
Ref: <https://github.com/jupyter/docker-stacks/issues/127>
|
|
|
|
### Using Local Spark JARs
|
|
|
|
```python
|
|
import os
|
|
|
|
os.environ[
|
|
"PYSPARK_SUBMIT_ARGS"
|
|
] = "--jars /home/jovyan/spark-streaming-kafka-assembly_2.10-1.6.1.jar pyspark-shell"
|
|
import pyspark
|
|
from pyspark.streaming.kafka import KafkaUtils
|
|
from pyspark.streaming import StreamingContext
|
|
|
|
sc = pyspark.SparkContext()
|
|
ssc = StreamingContext(sc, 1)
|
|
broker = "<my_broker_ip>"
|
|
directKafkaStream = KafkaUtils.createDirectStream(
|
|
ssc, ["test1"], {"metadata.broker.list": broker}
|
|
)
|
|
directKafkaStream.pprint()
|
|
ssc.start()
|
|
```
|
|
|
|
Ref: <https://github.com/jupyter/docker-stacks/issues/154>
|
|
|
|
### Using spark-packages.org
|
|
|
|
If you'd like to use packages from [spark-packages.org](https://spark-packages.org/), see
|
|
[https://gist.github.com/parente/c95fdaba5a9a066efaab](https://gist.github.com/parente/c95fdaba5a9a066efaab)
|
|
for an example of how to specify the package identifier in the environment before creating a
|
|
SparkContext.
|
|
|
|
Ref: <https://github.com/jupyter/docker-stacks/issues/43>
|
|
|
|
### Use jupyter/all-spark-notebooks with an existing Spark/YARN cluster
|
|
|
|
```dockerfile
|
|
FROM jupyter/all-spark-notebook
|
|
|
|
# Set env vars for pydoop
|
|
ENV HADOOP_HOME /usr/local/hadoop-2.7.3
|
|
ENV JAVA_HOME /usr/lib/jvm/java-8-openjdk-amd64
|
|
ENV HADOOP_CONF_HOME /usr/local/hadoop-2.7.3/etc/hadoop
|
|
ENV HADOOP_CONF_DIR /usr/local/hadoop-2.7.3/etc/hadoop
|
|
|
|
USER root
|
|
# Add proper open-jdk-8 not the jre only, needed for pydoop
|
|
RUN echo 'deb https://cdn-fastly.deb.debian.org/debian jessie-backports main' > /etc/apt/sources.list.d/jessie-backports.list && \
|
|
apt-get update --yes && \
|
|
apt-get install --yes --no-install-recommends -t jessie-backports openjdk-8-jdk && \
|
|
rm /etc/apt/sources.list.d/jessie-backports.list && \
|
|
apt-get clean && rm -rf /var/lib/apt/lists/* && \
|
|
# Add Hadoop binaries
|
|
wget https://mirrors.ukfast.co.uk/sites/ftp.apache.org/hadoop/common/hadoop-2.7.3/hadoop-2.7.3.tar.gz && \
|
|
tar -xvf hadoop-2.7.3.tar.gz -C /usr/local && \
|
|
chown -R "${NB_USER}:users" /usr/local/hadoop-2.7.3 && \
|
|
rm -f hadoop-2.7.3.tar.gz && \
|
|
# Install os dependencies required for pydoop, pyhive
|
|
apt-get update --yes && \
|
|
apt-get install --yes --no-install-recommends build-essential python-dev libsasl2-dev && \
|
|
apt-get clean && rm -rf /var/lib/apt/lists/* && \
|
|
# Remove the example hadoop configs and replace
|
|
# with those for our cluster.
|
|
# Alternatively, this could be mounted as a volume
|
|
rm -f /usr/local/hadoop-2.7.3/etc/hadoop/*
|
|
|
|
# Download this from ambari/cloudera manager and copy it here
|
|
COPY example-hadoop-conf/ /usr/local/hadoop-2.7.3/etc/hadoop/
|
|
|
|
# Spark-Submit doesn't work unless I set the following
|
|
RUN echo "spark.driver.extraJavaOptions -Dhdp.version=2.5.3.0-37" >> /usr/local/spark/conf/spark-defaults.conf && \
|
|
echo "spark.yarn.am.extraJavaOptions -Dhdp.version=2.5.3.0-37" >> /usr/local/spark/conf/spark-defaults.conf && \
|
|
echo "spark.master=yarn" >> /usr/local/spark/conf/spark-defaults.conf && \
|
|
echo "spark.hadoop.yarn.timeline-service.enabled=false" >> /usr/local/spark/conf/spark-defaults.conf && \
|
|
chown -R "${NB_USER}:users" /usr/local/spark/conf/spark-defaults.conf && \
|
|
# Create an alternative HADOOP_CONF_HOME so we can mount as a volume and repoint
|
|
# using ENV var if needed
|
|
mkdir -p /etc/hadoop/conf/ && \
|
|
chown "${NB_USER}":users /etc/hadoop/conf/
|
|
|
|
USER ${NB_UID}
|
|
|
|
# Install useful jupyter extensions and python libraries like :
|
|
# - Dashboards
|
|
# - PyDoop
|
|
# - PyHive
|
|
RUN pip install --no-cache-dir jupyter_dashboards faker && \
|
|
jupyter dashboards quick-setup --sys-prefix && \
|
|
pip2 install --no-cache-dir pyhive pydoop thrift sasl thrift_sasl faker && \
|
|
fix-permissions "${CONDA_DIR}" && \
|
|
fix-permissions "/home/${NB_USER}"
|
|
|
|
USER root
|
|
# Ensure we overwrite the kernel config so that toree connects to cluster
|
|
RUN jupyter toree install --sys-prefix --spark_opts="\
|
|
--master yarn \
|
|
--deploy-mode client \
|
|
--driver-memory 512m \
|
|
--executor-memory 512m \
|
|
--executor-cores 1 \
|
|
--driver-java-options \
|
|
-Dhdp.version=2.5.3.0-37 \
|
|
--conf spark.hadoop.yarn.timeline-service.enabled=false \
|
|
"
|
|
USER ${NB_UID}
|
|
```
|
|
|
|
Credit: [britishbadger](https://github.com/britishbadger) from [docker-stacks/issues/369](https://github.com/jupyter/docker-stacks/issues/369)
|
|
|
|
## Run Jupyter Notebook/Lab inside an already secured environment (i.e., with no token)
|
|
|
|
(Adapted from [issue 728](https://github.com/jupyter/docker-stacks/issues/728))
|
|
|
|
The default security is very good.
|
|
There are use cases, encouraged by containers, where the jupyter container and the system it runs within lie inside the security boundary.
|
|
It is convenient to launch the server without a password or token in these use cases.
|
|
In this case, you should use the `start.sh` script to launch the server with no token:
|
|
|
|
For JupyterLab:
|
|
|
|
```bash
|
|
docker run -it --rm \
|
|
jupyter/base-notebook:2023-02-28 \
|
|
start.sh jupyter lab --LabApp.token=''
|
|
```
|
|
|
|
For jupyter classic:
|
|
|
|
```bash
|
|
docker run -it --rm \
|
|
jupyter/base-notebook:2023-02-28 \
|
|
start.sh jupyter notebook --NotebookApp.token=''
|
|
```
|
|
|
|
## Enable nbextension spellchecker for markdown (or any other nbextension)
|
|
|
|
NB: this works for classic notebooks only
|
|
|
|
```dockerfile
|
|
# Update with your base image of choice
|
|
FROM jupyter/minimal-notebook:latest
|
|
|
|
USER ${NB_UID}
|
|
|
|
RUN pip install --no-cache-dir jupyter_contrib_nbextensions && \
|
|
jupyter contrib nbextension install --user && \
|
|
# can modify or enable additional extensions here
|
|
jupyter nbextension enable spellchecker/main --user && \
|
|
fix-permissions "${CONDA_DIR}" && \
|
|
fix-permissions "/home/${NB_USER}"
|
|
```
|
|
|
|
Ref: <https://github.com/jupyter/docker-stacks/issues/675>
|
|
|
|
## Enable Delta Lake in Spark notebooks
|
|
|
|
Please note that the [Delta Lake](https://delta.io/) packages are only available for Spark version > `3.0`.
|
|
By adding the properties to `spark-defaults.conf`, the user no longer needs to enable Delta support in each notebook.
|
|
|
|
```dockerfile
|
|
FROM jupyter/pyspark-notebook:latest
|
|
|
|
ARG DELTA_CORE_VERSION="1.2.1"
|
|
RUN pip install --no-cache-dir delta-spark==${DELTA_CORE_VERSION} && \
|
|
fix-permissions "${HOME}" && \
|
|
fix-permissions "${CONDA_DIR}"
|
|
|
|
USER root
|
|
|
|
RUN echo 'spark.sql.extensions io.delta.sql.DeltaSparkSessionExtension' >> "${SPARK_HOME}/conf/spark-defaults.conf" && \
|
|
echo 'spark.sql.catalog.spark_catalog org.apache.spark.sql.delta.catalog.DeltaCatalog' >> "${SPARK_HOME}/conf/spark-defaults.conf"
|
|
|
|
USER ${NB_UID}
|
|
|
|
# Trigger download of delta lake files
|
|
RUN echo "from pyspark.sql import SparkSession" > /tmp/init-delta.py && \
|
|
echo "from delta import *" >> /tmp/init-delta.py && \
|
|
echo "spark = configure_spark_with_delta_pip(SparkSession.builder).getOrCreate()" >> /tmp/init-delta.py && \
|
|
python /tmp/init-delta.py && \
|
|
rm /tmp/init-delta.py
|
|
```
|
|
|
|
## Add Custom Fonts in Scipy notebook
|
|
|
|
The example below is a Dockerfile to load Source Han Sans with normal weight, usually used for the web.
|
|
|
|
```dockerfile
|
|
FROM jupyter/scipy-notebook:latest
|
|
|
|
RUN PYV=$(ls "${CONDA_DIR}/lib" | grep ^python) && \
|
|
MPL_DATA="${CONDA_DIR}/lib/${PYV}/site-packages/matplotlib/mpl-data" && \
|
|
wget --quiet -P "${MPL_DATA}/fonts/ttf/" https://mirrors.cloud.tencent.com/adobe-fonts/source-han-sans/SubsetOTF/CN/SourceHanSansCN-Normal.otf && \
|
|
sed -i 's/#font.family/font.family/g' "${MPL_DATA}/matplotlibrc" && \
|
|
sed -i 's/#font.sans-serif:/font.sans-serif: Source Han Sans CN,/g' "${MPL_DATA}/matplotlibrc" && \
|
|
sed -i 's/#axes.unicode_minus: True/axes.unicode_minus: False/g' "${MPL_DATA}/matplotlibrc" && \
|
|
rm -rf "/home/${NB_USER}/.cache/matplotlib" && \
|
|
python -c 'import matplotlib.font_manager;print("font loaded: ",("Source Han Sans CN" in [f.name for f in matplotlib.font_manager.fontManager.ttflist]))'
|
|
```
|
|
|
|
## Enable clipboard in pandas on Linux systems
|
|
|
|
```{admonition} Additional notes
|
|
This solution works on Linux host systems.
|
|
It is not required on Windows and won't work on macOS.
|
|
```
|
|
|
|
To enable the `pandas.read_clipboard()` functionality, you need to have `xclip` installed
|
|
(installed in `minimal-notebook` and all the inherited images)
|
|
and add these options when running `docker`: `-e DISPLAY -v /tmp/.X11-unix:/tmp/.X11-unix`, i.e.:
|
|
|
|
```bash
|
|
docker run -it --rm \
|
|
-e DISPLAY \
|
|
-v /tmp/.X11-unix:/tmp/.X11-unix \
|
|
jupyter/minimal-notebook
|
|
```
|
|
|
|
## Add ijavascript kernel to container
|
|
|
|
The example below is a Dockerfile to install the [ijavascript kernel](https://github.com/n-riesco/ijavascript).
|
|
|
|
```dockerfile
|
|
# use one of the Jupyter Docker Stacks images
|
|
FROM jupyter/scipy-notebook:2023-02-28
|
|
|
|
# install ijavascript
|
|
RUN npm install -g ijavascript
|
|
RUN ijsinstall
|
|
```
|
|
|
|
## Add Microsoft SQL Server ODBC driver
|
|
|
|
The following recipe demonstrates how to add functionality to read from and write to an instance of Microsoft SQL server in your notebook.
|
|
|
|
```dockerfile
|
|
ARG BASE_IMAGE=jupyter/tensorflow-notebook
|
|
|
|
FROM $BASE_IMAGE
|
|
|
|
USER root
|
|
|
|
ENV MSSQL_DRIVER "ODBC Driver 18 for SQL Server"
|
|
ENV PATH="/opt/mssql-tools18/bin:${PATH}"
|
|
|
|
RUN apt-get update --yes && \
|
|
apt-get install --yes --no-install-recommends gnupg2 && \
|
|
wget -qO- https://packages.microsoft.com/keys/microsoft.asc | gpg --dearmor > /usr/share/keyrings/microsoft.gpg && \
|
|
apt-get purge --yes gnupg2 && \
|
|
echo "deb [arch=amd64,armhf,arm64 signed-by=/usr/share/keyrings/microsoft.gpg] https://packages.microsoft.com/ubuntu/22.04/prod jammy main" > /etc/apt/sources.list.d/microsoft.list && \
|
|
apt-get update --yes && \
|
|
ACCEPT_EULA=Y apt-get install --yes --no-install-recommends msodbcsql18 && \
|
|
apt-get clean && rm -rf /var/lib/apt/lists/*
|
|
|
|
# Switch back to jovyan to avoid accidental container runs as root
|
|
USER ${NB_UID}
|
|
|
|
RUN pip install --no-cache-dir pyodbc
|
|
```
|
|
|
|
You can now use `pyodbc` and `sqlalchemy` to interact with the database.
|
|
|
|
Pre-built images are hosted in the [realiserad/jupyter-docker-mssql](https://github.com/Realiserad/jupyter-docker-mssql) repository.
|